De digitale vraagbaak voor het wiskundeonderwijs

home |  vandaag |  gisteren |  bijzonder |  prikbord |  gastenboek |  wie is wie? |  contact

HOME

samengevat
vragen bekijken
een vraag stellen
hulpjes
zoeken
FAQ's
links
twitter
boeken
help

inloggen

colofon

  \require{AMSmath} Printen

R en s elimineren

hallo,

ik heb een oefening die niet goed lukt omdat ik er geen voorbeelden van heb:

Bepaal een cartesiaanse vergelijking van het vlak dat de punten A(2,3,1) en B(1,3,2) bevat en evenwijdig is met de rechte PQ met P(5,-4, 0) en Q(1,-2,-3).

Dit vond ik al:

AB(-1,4,1) PQ(-4,2,-3) of (4,-2,3)
{x=2-r+4s
a $\leftrightarrow$ {y=-1+4r-2s
{z=1+r+3s

maar nu zit ik vast omdat ze zeggen (in de verbetersleutel) r en s te elimineren maar ik heb altijd oefeningen gemaakt waar er bij 2 van de 3 letters alleen s of r stonden en dan was het makkelijk maar hier bevinden zich in alle drie de letters r en is en ik snap niet hoe ik hieruit een cartesiaanse moet krijgen.

alvast bedankt
liesl

liesl
3de graad ASO - zondag 5 juni 2016

Antwoord

Hallo

De vector AB = (-1,0,1) of (1,0,-1)

De parametervergelijkingen zijn dan:
x = 2 + r + 4s (1)
y = 3 - 2s (2)
z = 1 - r + 3s (3)

Twee onbekenden (r en s) elimineren uit 3 vergelijkingen kan men doen met matrixrekenen of met behulp van determinanten, maar blijkbaar heb je dit niet gezien (wat me wel verwonderd).

We doen het dan maar op een minder elegante manier:
Vergelijking en (1) en (3) lossen we op naar r :
r = x - 2 - 4s = -z + 1 + 3s
hieruit volgt : 7s = x + z - 3
of s = (x + z - 3)/7

Uit (2) volgt : 2s = -y + 3
of s = (-y + 3)/2

Dus : 2(x + z - 3) = 7(-y + 3)
en : 2x +7y + 2z = 27

Dit is de gevraagde vergelijking.

Ok?

Wie is wie?
Vragen naar aanleiding van dit antwoord? Klik rechts..!
zondag 5 juni 2016



klein |  normaal |  groot

home |  vandaag |  bijzonder |  twitter |  gastenboek |  wie is wie? |  colofon

©2001-2021 WisFaq - versie 3