De digitale vraagbaak voor het wiskundeonderwijs

home |  vandaag |  gisteren |  bijzonder |  gastenboek |  wie is wie? |  verhalen |  contact

HOME

samengevat
vragen bekijken
een vraag stellen
hulpjes
zoeken
FAQ
links
twitter
boeken
help

inloggen

colofon

  \require{AMSmath} Printen

Groepentheorie

Beste

Zou iemand me kunnen uitleggen hoe we een verzameling definiŽren? Bvb. Gn= {g Ä G| g^n = 1 } en G^N = {g^n |g ÄG}.
Ik zou ook moeten aantonen dat deze normaal groepen zijn. Dat moet ik doen door aan te tonen dat linker- en rechternevenklassen gelijk zijn? Of is dat niet waar?
We weten hiervoor dat G een groep is en (xy)^n=x^ny^n voor een vaste n Ä. x,y zijn ook elementen van G.
Uiteindelijk moeten we hier aantonen dat | G^n| = [G : Gn]
Kan iemand me op weg helpen?
Alstublieft?
Alvast bedankt

Steffi
Student universiteit BelgiŽ - donderdag 2 april 2015

Antwoord

De aanname dat $x^ny^n=(xy)^n$ voor alle $x$ en $y$ impliceert dat $g\mapsto g^n$ een homomorfisme van $G$ naar $G$ is, de verzameling $G_n$ is daar de kern van, dus een normale ondergroep van $G$, het beeld is $G^n$ en dat is dan ook een ondergroep, zelfs een normaaldeler. Dat laatste bewijs je inderdaad door aan te tonen dat $hG^n=G^nh$ voor alle $h$. Daarvoor kun je het beste nagaan dat $hg^n = (hgh^{-1})^nh$ voor alle $g$ en $h$.
Tenslotte: uit de eerste isomorfiestelling volgt dat $G^n$ en $G/G_n$ isomorf zijn.

kphart
Vragen naar aanleiding van dit antwoord? Klik rechts..!
vrijdag 3 april 2015



home |  vandaag |  bijzonder |  gastenboek |  statistieken |  wie is wie? |  verhalen |  colofon

©2001-2023 WisFaq - versie 3