De digitale vraagbaak voor het wiskundeonderwijs

home |  vandaag |  gisteren |  bijzonder |  prikbord |  gastenboek |  wie is wie? |  contact

HOME

samengevat
vragen bekijken
een vraag stellen
hulpjes
zoeken
FAQ's
links
twitter
boeken
help

inloggen

colofon

  \require{AMSmath} Printen

Bewijs ivm hyperbool

Hallo
Ik heb examen van wiskunde maar ben al even aan het zoeken op een bewijsje. De vraag is de volgende.
Door een punt M van de hyperbool H $\leftrightarrow$ x2/a2 - y2/b2 = 1
trekt men een rechte k evenwijdig aan een asymptoot. De rechte k snijdt de richtlijn r $\leftrightarrow$ a2/c in het punt R.
Toon aan dat |MR|=|MF| waarin F(c,0) het brandpunt is, horend bij de richtlijn.
Alvast enorm bedankt!

Julie
3de graad ASO - zondag 14 december 2014

Antwoord

Hallo

Stel M(x0,b/a√(x02-a2)
De rico van de rechte k = b/a
Hiermee stel je de vergelijking op van de rechte k.

Stel hierin x gelijk aan a2/c (= de x-waarde van R) en je vindt de y-waarde van het punt R.
Deze y-waarde is gelijk aan : b/a[(a2-x0.c)/c+√(x02-a2)]

Bereken nu de afstand |MR| en |MF|
Hierbij is c2 = a2+b2 of b2 = c2-a2

Je vindt telkens :| (a2-x0.c)/a |

Lukt het zo?

Wie is wie?
Vragen naar aanleiding van dit antwoord? Klik rechts..!
zondag 14 december 2014



klein |  normaal |  groot

home |  vandaag |  bijzonder |  twitter |  gastenboek |  statistieken |  wie is wie? |  colofon

©2001-2021 WisFaq - versie 3