De digitale vraagbaak voor het wiskundeonderwijs

home |  vandaag |  gisteren |  bijzonder |  prikbord |  gastenboek |  wie is wie? |  contact

HOME

samengevat
vragen bekijken
een vraag stellen
hulpjes
zoeken
FAQ's
links
twitter
boeken
help

inloggen

colofon

  \require{AMSmath} Printen

Diophantische vergelijking 3 onbekenden

De voorwaarde is dat x,y,z gehele natuurlijke getallen zijn. Ik kan geen oplossingsmethode vinden om het op te lossen naast 'oneindig' oplossingen invoeren.

Ik heb z al gesubstitueerd, dit elimineert z en heb ik nog x en y over maar dit helpt me ook niet. Wat zie ik over het hoofd?
Het gaat om het volgende stelsel:

x+y+z=1200
100x+40y+2z=24000

Koen
Student hbo - zaterdag 13 december 2014

Antwoord

Als je de tweede vergelijking door $2$ deelt en dan de eerste er van aftrekt dan krijg je $49x+19y=10800$, of $19y=10800-49x$. Vul dan achtereenvolgens $x=1$, $x=2$, ..., $x=19$ in, onderweg vind je een $19$-voud en dus een oplossing van je stelsel. Door bij de bijbehorende $x$ steeds $19$-vouden op te tellen krijg je nog meer oplossingen. De reden dat dit werkt is dat $\mathop{\mathrm{ggd}}(49,19)=1$; daaruit volgt dat $19y=10800$ een oplossing heeft modulo $49$.

kphart
Vragen naar aanleiding van dit antwoord? Klik rechts..!
zaterdag 13 december 2014



klein |  normaal |  groot

home |  vandaag |  bijzonder |  twitter |  gastenboek |  wie is wie? |  colofon

©2001-2021 WisFaq - versie 3