De digitale vraagbaak voor het wiskundeonderwijs

home |  vandaag |  gisteren |  bijzonder |  prikbord |  gastenboek |  wie is wie? |  contact

HOME

samengevat
vragen bekijken
een vraag stellen
hulpjes
zoeken
FAQ's
links
twitter
boeken
help

inloggen

colofon

  \require{AMSmath} Printen

Buigpunten en raaklijnen

vraag: voor welke waarde(n) van a heeft de grafiek van f een buigpunt met een horizontale raaklijn? en f(x)= (x2+a)e(tot de x ste macht)

ik weet dat je dan f'(x) = 0 moet stellen voor de horizontale raaklijn, maar is dit ook zo voor een Buigraaklijn? Ik kom dan a=1 uit, wat dus ook de juiste oplossing is. Maar dan heb ik nog niets met het buigpunt gedaan.
Dan zou je dus ook nog f''(x)=0 moeten doen, maar dan kom ik a=2 uit .....

groetjes Jana

Jana
3de graad ASO - zaterdag 15 november 2014

Antwoord

Hallo Jana,

In een buigpunt met horizontale buigraaklijn geldt:

f'(x)=0 ; n:
f''(x)=0

Ofwel:

(x2+2x+a)=0 n:
(x2+4x+a+2)=0

(weet je nog? ex wordt nooit nul)

Wanneer je de eerste vergelijking invult in de tweede, dan vind je:

2x+2=0
x=-1

Dit vul je weer in de eerste vergelijking in:
(-1)2 -2 +a = 0
a = 1

OK zo?

Doe je de groetjes aan Jasmine en Anke?

Wie is wie?
Vragen naar aanleiding van dit antwoord? Klik rechts..!
zaterdag 15 november 2014



klein |  normaal |  groot

home |  vandaag |  bijzonder |  twitter |  gastenboek |  wie is wie? |  colofon

©2001-2021 WisFaq - versie 3