De digitale vraagbaak voor het wiskundeonderwijs

home |  vandaag |  gisteren |  bijzonder |  prikbord |  gastenboek |  wie is wie? |  contact

HOME

samengevat
vragen bekijken
een vraag stellen
hulpjes
zoeken
FAQ's
links
twitter
boeken
help

inloggen

colofon

  \require{AMSmath} Printen

Maximale oppervlakte rechthoek onder parabool

Voor Seminarie Wiskunde moeten wij een programma schrijven dat de oppervlakte berekent van de zo groot mogelijke rechthoek onder een willekeurige parabool. Twee hoekpunten moeten op de x-as liggen en de andere hoekpunten op de parabool. Ik weet al dat bij een dalparabool, de parabool onder de x-as moet liggen en bij een bergparabool, de parabool boven de x-as moet liggen. Maar voor de rest zit ik vast. Nu is mijn vraag hoe je juist de maximale oppervlakte berekent voor een rechthoek onder een parabool, want ik heb geen idee hoe ik daaraan moet beginnen. (De leerkracht zei dat we misschien eerst een functievoorschrift voor die rechthoek moeten zoeken). Maar ik en mijn medeleerling hebben geen idee hoe we dit alles moeten aanpakken.
alvast bedankt

Evy De
3de graad ASO - zaterdag 11 oktober 2014

Antwoord

Ik zou voor het idee dit doen:

Bekijk bergparabool y=-ax2 + b (a$>$0, b$>$0)
Kijk nu naar x=k Als yk$>$0 dan heb ik een oppervlakte
Dan geldt opp = 2kyk = 2k(-ak2+b) = -2ak3+2bk
Afgeleide naar k nul stellen en juiste waarde invullen geeft de oplossing

Nu geldt voor alle parabolen van de vorm y=-a(x-c)2 + b (a$>$0, b$>$0) dat deze allemaal dezelfde oppervlakte genereren.

Een dalparabool kun je eerst spiegelen ..... verder de eindjes aan elkaar knopen.

Met vriendelijke groet
JaDeX

Wie is wie?
Vragen naar aanleiding van dit antwoord? Klik rechts..!
zaterdag 11 oktober 2014



klein |  normaal |  groot

home |  vandaag |  bijzonder |  twitter |  gastenboek |  statistieken |  wie is wie? |  colofon

©2001-2021 WisFaq - versie 3