De digitale vraagbaak voor het wiskundeonderwijs

home |  vandaag |  gisteren |  bijzonder |  gastenboek |  wie is wie? |  verhalen |  contact

HOME

samengevat
vragen bekijken
een vraag stellen
hulpjes
zoeken
FAQ
links
twitter
boeken
help

inloggen

colofon

  \require{AMSmath} Printen

Stelsel Cramer

Beste,

Bij een homogeen 2x3-stelsel
(vb. a1x + b1y + c1z = 0
a2x + b2y + c2z=0) dan kan men onder bepaalde voorwaarden dit stelsel schrijven als een stelsel van Cramer door met hoofdonbekenden x en y en met nevenonbekenden z te werken (zodat a1x + b1y = -c1z en a2x + b2y = -c2z)
Wat zijn die voorwaarden dan?
Hopelijk kunnen jullie mij (snel) helpen (:
alvast bedankt!

Farah-
3de graad ASO - maandag 25 maart 2013

Antwoord

Dag Farah,

De determinant van die 2x2-matrix die je zou krijgt mag niet gelijk zijn aan 0. Want dan gaat het stelsel van Cramer niet op. Ook is het stelsel van Cramer erg bewerkelijk als de nxn-matrix te groot wordt.

q69959img1.gif

Dan zou het allemaal moeten lukken.

Verder kun je via hier ook nog wel wat info vinden.

Met vriendelijke groet

Wie is wie?
Vragen naar aanleiding van dit antwoord? Klik rechts..!
donderdag 25 april 2013



home |  vandaag |  bijzonder |  gastenboek |  statistieken |  wie is wie? |  verhalen |  colofon

©2001-2023 WisFaq - versie 3