De digitale vraagbaak voor het wiskundeonderwijs

home |  vandaag |  gisteren |  bijzonder |  prikbord |  gastenboek |  wie is wie? |  contact

HOME

samengevat
vragen bekijken
een vraag stellen
hulpjes
zoeken
FAQ's
links
twitter
boeken
help

inloggen

colofon

  \require{AMSmath} Printen

Snijpunt van grafieken

Hoi,

Bepaal het snijpunt de van grafieken van de volgende twee functies:
f(x)= 4x
g(x)= 2x+12

Het antwoord moet (2,16) zijn. bij de vorige sommen heb ik de volgende methode moeten toepassen, alleen werkt hij dus niet op deze som. Die gaat als volgt:
4x kun je ook schrijven als (22)x
2x kun je ook schrijven als (21)x

dan heb je:
(22)x = (21)x + 12 en dan ga je het zo weg werken maar ik kom dan op x = 12.
Kan iemand mij vertellen wat ik fout doe en hoe ik deze som wel moet maken.

bij voorbaat dank!

Caroly
Student universiteit - maandag 22 oktober 2012

Antwoord

Die laatste conclusie klopt niet. 4x-2x is geen x.

Hoe dan wel?

4x=2x+12
4x-2x-12=0
(22)x-2x-12=0
(2x)2-2x-12=0

Neem y=2x

y2-y-12=0
(y-4)(y+3)=0
y=4 of y=-3

1.
2x=4 geeft x=2
Invullen f(2) of g(2) geeft y=16

2.
2x=-3 kan niet.

...en dat moet het zijn...

Wie is wie?
Vragen naar aanleiding van dit antwoord? Klik rechts..!
maandag 22 oktober 2012



klein |  normaal |  groot

home |  vandaag |  bijzonder |  twitter |  gastenboek |  wie is wie? |  colofon

©2001-2021 WisFaq - versie 3