De digitale vraagbaak voor het wiskundeonderwijs

home |  vandaag |  gisteren |  bijzonder |  prikbord |  gastenboek |  wie is wie? |  contact

HOME

samengevat
vragen bekijken
een vraag stellen
hulpjes
zoeken
FAQ's
links
twitter
boeken
help

inloggen

colofon

  \require{AMSmath} Printen

Matrixnorm

Als definitie van de norm van een k x n- matrix A heb ik het volgende: de norm van A = ||A|| = sup { ||A(x)|| | x $\in$ n, ||x|| $\le$ 1}.
Via deze definitie zou ik graag bewijzen dat
||A(x)|| $\le$ ||A|| ||x||, voor alle k x n-matrices A en alle x $\in$ n.

Het enige wat ik meteen zie is dat ||A|| een supremum is en dus groter dan of gelijk aan is ||A(x)|| met ||x|| $\le$ 1. Maar verder geraak ik niet echt.

Margot
Student universiteit BelgiŽ - zondag 7 oktober 2012

Antwoord

Gebruik wat eigenschappen van de norm en de matrixvermenigvuldiging: voor elke $\lambda$ geldt $\|A(\lambda x)\|=|\lambda|\cdot\|Ax\|$. Pas dit nu toe met $\lambda=1/\|x\|$ (voor $x\neq0$).

kphart
Vragen naar aanleiding van dit antwoord? Klik rechts..!
maandag 22 oktober 2012



klein |  normaal |  groot

home |  vandaag |  bijzonder |  twitter |  gastenboek |  wie is wie? |  colofon

©2001-2021 WisFaq - versie 3