De digitale vraagbaak voor het wiskundeonderwijs

home |  vandaag |  gisteren |  bijzonder |  prikbord |  gastenboek |  wie is wie? |  contact

HOME

samengevat
vragen bekijken
een vraag stellen
hulpjes
zoeken
FAQ's
links
twitter
boeken
help

inloggen

colofon

  \require{AMSmath} Printen

Ogenblikkelijke verandering

Onze leerkracht vertelde ons vandaag dat bij een voorbeeld van een dalparabool, met een punt gekozen in de rechterhelft. Ze vertelde ons dat de grafiek IN het punt stijgt. Maar een punt kan toch niet stijgen of dalen, volgens mij is het waarschijnlijk rondt een punt dat het stijgt en niet in een punt. Wie heeft gelijk? Graag verdere uitleg

Van Co
3de graad ASO - maandag 12 maart 2012

Antwoord

Een functie is stijgend in een punt als de helling in dat punt groter is dan 0 (Losjes gedefinieerd). Dat is het geval voor alle punten van een dalparabool rechts van de 'top'.
Er wordt ook niet gezegd dat een punt stijgt, maar dat de grafiek stijgend is in dat punt.
Waar jij waarschijnlijk aan denkt is de definitie voor stijgend op een interval:
Een functie f is strikt stijgend op een interval als voor iedere a en b uit dat interval a$<$b impliceert f(a)$<$f(b).
De tweede definitie gaat zo'n beetje in de eerste over als je a en b willeurig dicht bij elkaar neemt.

Wie is wie?
Vragen naar aanleiding van dit antwoord? Klik rechts..!
maandag 12 maart 2012



klein |  normaal |  groot

home |  vandaag |  bijzonder |  twitter |  gastenboek |  wie is wie? |  colofon

©2001-2021 WisFaq - versie 3