De digitale vraagbaak voor het wiskundeonderwijs

home |  vandaag |  gisteren |  bijzonder |  prikbord |  gastenboek |  wie is wie? |  contact

HOME

samengevat
vragen bekijken
een vraag stellen
hulpjes
zoeken
FAQ's
links
twitter
boeken
help

inloggen

colofon

  \require{AMSmath} Printen

Theoretische kansen

een vaas bevat tien ballen, van 1 tot 10 genummerd. er worden, met teruglegging, zes ballen aselect uit genomen. Bereken de kans dat :

er viermaal tien getrokken wordt :

1/10 ·1/10·1/10·1/10·4 ·9/10·9/10

de zes nummers opeenvolgende natuurlijke getallen zijn

1·1/10·/1/10·1/10·1/10·1/10

er hoogstens 1 tien getrokken wordt

(9/10·9/10·9/10·9/10·9/10·9/10)+ ( 1/10·9/10·9/10·9/10·9/10·9/10)


van wat ik doet komt niets overeen met mijn boek, weten jullie waar ik fout zit ?

d
3de graad ASO - zaterdag 4 juni 2011

Antwoord

Beste d (volgende keer mag je je voornaam wel geven hoor ;-) )

De eerste vraag gaat over een "binomiaal kansexperiment", dwz een kansexperiment dat je een bepaald aantal keer (in ons geval: 6x) herhaalt en waarbij er sprake is van "succes" (het trekken van een 10) en "niet-succes" (het trekken van geen-10)
Noem het trekken van een 10: A. En het trekken van geen-10: B.
één mogelijk scenario voor het trekken van 4 tienen in een greep van 6, is:
AAAABB. De kans hierop is (0,1)4.(0,9)2
Maar een ander mogelijk scenario is bijv:
AAABAB. De kans hierop is eveneens (0,1)4.(0,9)2
Dus hoeveel verschillende scenarios zijn er mogelijk die uiteindelijk 4xtien en 2xgeen10 tot gevolg hebben? Dat is "6 boven 4" = 15.
Dus de totale kans is 15.(0,1)4.(0,9)2

bij vraag 2: wat zijn de toegestane scenario's?
123456, 234567, 345678, 456789, 5678910
Kans op 1 bepaald setje is (0,1).(0,1).(0,1).(0,1).(0,1).(0,1)
= (0,1)6, dus kans op één van deze 5 setjes is ...

bij vraag 3: is eveneens een binomiaal kansexperiment.
p("hoogstens 1 tien")=p("géén 10") + p("slechts 1 tien")
p("géén 10")=(9/10)6 = (0,9)6;
"slechts 1 tien" kan via ABBBBB of BABBBB of BBABBB of ... (tel zelf verder)
De kans op 1 bepaald scenario (bijv ABBBBB) is (0,1).(0,9)5
dus p("slechts 1 tien")= ....

hopelijk kom je eruit zo

groeten,

martijn

mg
Vragen naar aanleiding van dit antwoord? Klik rechts..!
zaterdag 4 juni 2011



klein |  normaal |  groot

home |  vandaag |  bijzonder |  twitter |  gastenboek |  wie is wie? |  colofon

©2001-2021 WisFaq - versie 3