De digitale vraagbaak voor het wiskundeonderwijs

home |  vandaag |  gisteren |  bijzonder |  prikbord |  gastenboek |  wie is wie? |  contact

HOME

samengevat
vragen bekijken
een vraag stellen
hulpjes
zoeken
FAQ's
links
twitter
boeken
help

inloggen

colofon

  \require{AMSmath} Printen

MacLaurin voor benadering

Gebruik een MacLaurinreeks van ln(1-x) om ln(1/2) te berekenen tot op 0.001 nauwkeurig. Een rekenmachine is niet toegestaan.

Dit heb ik:

Ln(1/2) = -ln2


MacLaurin:

f'(x) voor f(0) -- -0!
f''(x) voor f(0) -- -1!
f'''(x) voor f(0) -- -2!
.....
f^n(x) voor f(0) -- -(n-1)!

MacLaurinreeks wordt:

ln(1-x) = 0 - x - x2/2 - x3/3 - ... - x^n/n + Rn(x)
= Ln(1-x) = - Ś x^n/n

Waar loop ik vast: de restterm in zijn algemeenheid uitschrijven

Wat heb ik daarvan:

Rn(x) = [f^(n+1)(c)* x^(n+1)](n+1)!
Ik krijg hem echter niet uitgeschreven in dit geval omdat ik niet weet hoe je aangeeft dat voor de even machten er een minteken dient voor te staan, voor de oneven niet (continue alternerend dus).

Bovendien vraag ik me af hoe ik dan vanuit dit mijn waarde kies om een referentiewaarde te bepalen die ik op deze manier kan uitwerken:

"te bepalen waarde op basis van restterm Rn(x)" 10^-3

alvast bedankt voor jullie hulp (:

Sufjan
Student universiteit BelgiŽ - zondag 28 maart 2010

Antwoord

dag Sufjan,

In dit geval lijkt het me handiger om niet de omzetting
ln(1/2) = -ln(2) te gebruiken, maar voor x 'gewoon' de waarde 1/2 in te vullen in de reeks. Je hebt dan geen last meer van het alterneren, en je kunt de restterm eenvoudig afschatten.
groet,

Wie is wie?
Vragen naar aanleiding van dit antwoord? Klik rechts..!
maandag 29 maart 2010



klein |  normaal |  groot

home |  vandaag |  bijzonder |  twitter |  gastenboek |  wie is wie? |  colofon

©2001-2021 WisFaq - versie 3