De digitale vraagbaak voor het wiskundeonderwijs

home |  vandaag |  gisteren |  bijzonder |  prikbord |  gastenboek |  wie is wie? |  contact

HOME

samengevat
vragen bekijken
een vraag stellen
hulpjes
zoeken
FAQ's
links
twitter
boeken
help

inloggen

colofon

  \require{AMSmath} Printen

Reductieformule

Gegeven:Int tan5(x)dx Te berekenen: F(x) Berekening: Ik maak gebruik van de reductieformule uit "Antiderivatives/Reduction Formulas". Het lijkt geen probleem, maar de uitkomst verschilt met "Wolframalpha.com"
Als volgt:
{tan4(x)/4}-Int{tan3(x)}dx={tan4(x)/4}-Int{tan2(x).tan(x))dx={tan4(x)/4}-Int[{sec2(x)-1}.tan(x)]dx=
{tan4(x)/x}-Int[tan(x).sec2(x)]dx-Int[tan(x)]dx=
Stel nu alleen even voor het middengedeelte u=tan(x) du=sec2(x)dx; zodat:
{tan4(x)/4}-Int[u]du-Int[tan(x)]dx=
{tan4(x)/4}-Int d[u2/2]-Int[sin(x)/cos(x)}dx=
Stel nu t=cos(x) dt=-sin(x)dx
{tan4/4}-1/2u2 +Int d[1/cos(x)]d{cos(x)}=
{tan4(x)/4}-1/2tan2(x)+ ln(cos(x)) + C
Volgens "Wolframalpha"
y={sec4(x)/4}-sec2(x)-ln{cos(x)}
Ik hoop dat iemand kan bevestigen, dat ik geen vergissing heb gemaakt! Bij voorbaat hartelijk dank.

Johan
Student hbo - maandag 23 november 2009

Antwoord

Bij het derde =-teken krijg je +Int[tan(x)]dx. Verder is je antwoord goed; je kunt tan4(x)/4-1/2tan2(x) ombouwen tot sec4(x)/4-sec2(x) (vervang in de even machten van tan(x) telkens sin2x door 1-cos2x en werk het geheel uit.

kphart
Vragen naar aanleiding van dit antwoord? Klik rechts..!
woensdag 25 november 2009
 Re: Reductieformule 



klein |  normaal |  groot

home |  vandaag |  bijzonder |  twitter |  gastenboek |  wie is wie? |  colofon

©2001-2020 WisFaq - versie IIb