De digitale vraagbaak voor het wiskundeonderwijs

home |  vandaag |  gisteren |  bijzonder |  gastenboek |  wie is wie? |  verhalen |  contact

HOME

samengevat
vragen bekijken
een vraag stellen
hulpjes
zoeken
FAQ
links
twitter
boeken
help

inloggen

colofon

  \require{AMSmath} Printen

Matrix vinden

Dit wordt als voorbeeld gegeven en daar snap ik niks van!

In R3 is P een scheve parallelprojectie op het vlak
x - y + z = 0 waarbij (0,0,0) het beeld van (2,-3,5) is.
P(1,1,0) = (1,1,0) en P(0,1,1) = (0,1,1) (dekpunten!!)

Door lineaire combinaties te maken worden de kolommen gevonden van de matrix van P (welke, Hoe????)

8 2 -2
Dit levert 1/10 3 7 3
-5 5 5

Jack
Student hbo - zondag 27 september 2009

Antwoord

In je matrix moeten de beelden komen van de vectoren (1,0,0) en (0,1,0) en (0,0,1).
Je kunt dit rechtstreeks aanpakken op grond van de gegeven meetkundige structuur van de projectie, maar je kunt ook de lineariteit uitbuiten.
Schrijf (1,0,0) als lineaire combinatie van de vectoren waarvan het beeld gegeven is.
Dus: (1,0,0) = a.(2,-3,5) + b.(1,1,0) + c.(0,1,1)
Dat geeft a = 1/10 en b = 4/5 en c = -1/2
Dus is P(1,0,0) bekend, namelijk 1/10.(0,0,0) + 4/5.(1,1,0) + -1/2.(0,1,1)

Herhaal dit met (0,1,0) en (0,0,1) en de matrix is er.

MBL
Vragen naar aanleiding van dit antwoord? Klik rechts..!
zondag 27 september 2009
 Re: Matrix vinden 



home |  vandaag |  bijzonder |  gastenboek |  statistieken |  wie is wie? |  verhalen |  colofon

©2001-2023 WisFaq - versie 3