De digitale vraagbaak voor het wiskundeonderwijs

home |  vandaag |  gisteren |  bijzonder |  prikbord |  gastenboek |  wie is wie? |  contact

HOME

samengevat
vragen bekijken
een vraag stellen
hulpjes
zoeken
FAQ's
links
twitter
boeken
help

inloggen

colofon

  \require{AMSmath} Printen

Re: Oppervlakte berekenen met behulp van primitiveren

 Dit is een reactie op vraag 59751 
Hallo,

Bedankt voor het snelle antwoord. Ik ben inderdaad bekend met de functie y=arctan(x), maar kan alsnog geen oplossing vinden. U zegt dat ik de som moet berekenen met partitieel integreren. Moet je dan ˛(1Ěln(x2+1)dx berekenen? Want dan zou je opzich tot ook meteen ˛ln(x2+1)dx kunnen berekenen? Is de primitieve van ln(x2+1) niet gewoon (2x)/(x2+1)? Zou je misschien nog een hint kunnen geven?

Groetjes,

Lynn
Leerling bovenbouw havo-vwo - zaterdag 27 juni 2009

Antwoord

De vraag of (2x)/(x2+1) primitieve is van ln(x2+1), is gemakkelijk zelf te beantwoorden. Differentieer die breuk maar eens! Je volgt dan de quotiŰntregel en dan komt er toch nergens een logaritme om de hoek kijken, lijkt me.
Om ln(x2+1) partieel te integreren krijg je het volgende;

˛ln(x2+1)dx = x.ln(x2+1) - ˛x.d(lnx2+1) = x.ln(x2+1) - ˛x.(1/(x2+1).2xdx enz.

MBL
Vragen naar aanleiding van dit antwoord? Klik rechts..!
zaterdag 27 juni 2009



klein |  normaal |  groot

home |  vandaag |  bijzonder |  twitter |  gastenboek |  wie is wie? |  colofon

©2001-2020 WisFaq - versie IIb