De digitale vraagbaak voor het wiskundeonderwijs

home |  vandaag |  gisteren |  bijzonder |  prikbord |  gastenboek |  wie is wie? |  contact

HOME

samengevat
vragen bekijken
een vraag stellen
hulpjes
zoeken
FAQ's
links
twitter
boeken
help

inloggen

colofon

  \require{AMSmath} Printen

Oppervlakte berekening

Gegeven: grafiek x2.y-x2+4.y=0 en x is element van [0,2]

Te berekenen: Oppervlakte "A"

Berekening:
A = Int {0,2](x2y-x2+4y) dx= Het eerste stukje van de Int: x2.y dx= In REA's Problem Solver heb ik reeds gezien dat je nu de waarde voor x moet weten uit de gegeven vergelijking, om de nieuwe limits in y te vinden. Echter dat lukt mij niet, omdat x2=(-4.y)/(y-1)een negatieve waarde is. Je kunt immers geen wortel uit een negatief getal trekken! Met die "x" zou je dan een nieuwe integraal kunnen vinden en dan naar y integreren, aldus REA's. Ik kom hier niet uit. Toegegeven dat dit wat boven onze exameneisen ligt, maar ik wil het toch wel graag weten! Wie helpt mij weer op weg? Bij voorbaat heel hartelijk dank.

Johan
Student hbo - zaterdag 30 mei 2009

Antwoord

Johan,
Uit yx2-x2+4y=0 volgt dat y=x2/(4+x2)=1-4/(4+x2). Zo moet het wel lukken.

kn
Vragen naar aanleiding van dit antwoord? Klik rechts..!
zondag 31 mei 2009



klein |  normaal |  groot

home |  vandaag |  bijzonder |  twitter |  gastenboek |  wie is wie? |  colofon

©2001-2020 WisFaq - versie IIb