De digitale vraagbaak voor het wiskundeonderwijs

home |  vandaag |  gisteren |  bijzonder |  prikbord |  gastenboek |  wie is wie? |  contact

HOME

samengevat
vragen bekijken
een vraag stellen
hulpjes
zoeken
FAQ's
links
twitter
boeken
help

inloggen

colofon

  \require{AMSmath} Printen

Meetkundige plaats: eliminatie van de parameter

Hallo, hier ben ik weer hoor, met volgende vraag:

Op de zijde bc van een vaste driehoek abc nemen we de veranderlijke punten q en r zo dat c het midden is van |qr|. We verbinden q met a en r met het midden s van |ac|. Bepaal de meetkundige plaats van het snijpunt p van qa en rs.
De rechten qa en rs zijn hier de voortbrengende krommen.

Voorbeeld:

cb op de X-as, ca op de Y-as

We stellen:
a(0,A) b(B,0) c(0,0) s(0,A/2)
parameter & eerste coordinaat van q
dus: q(&,0) r(-&,0)

vergelijkingen:
qa: Ax+&y-&A=0
rs: Ax-2&y+&A=0

we vinden stelsel: |(y-A)&=-Ax
|(A-2y)&=-Ax
De vergelijking van de meetkundige plaats vinden we door uit te drukken dat dit 2*1 stelsel in & een oplossing heeft (niet strijdig is). We moeten dus & elimineren (rang is 1):
|y-A -Ax|
|A-2y -Ax|
dit geeft
3xy-2Ax=0 of x=0 en 3y-2A=0
Zodat de meetkundige plaats de verzameling van punten K is die de y-as snijdt en evenwijdig is met bc ofwel de x-as.

Men probleem hierin is: bij de eliminatie van de parameter &(delta zeker) geeft me dit een ander gegeven zoals:
(y-A)*-Ax-((A-2y)*-Ax)=0
-Axy +A2x+A2x-2Axy=0
zodat 3Axy-2A2x=0, maar dus niet 3xy-2Ax=0, dus het blijkt me dat in het stelsel waar er -Ax staat deze A is weggelaten, echter weet ik niet waarom, ik heb maar een beperkte kennis van stelsels, graag wat meer uitleg.

gerrie
3de graad ASO - woensdag 20 mei 2009

Antwoord

Gerrie,
Wat je doet klopt niet helemaal.Bovendien neem je wel een heel speciaal geval.Maar vooruit.Neem A(0,a), a0,,B(b,0),b0,,C(0,0),Q(q,0)met q tussen 0 en b ,R(-q,0)) en S(0,a/2).Dan is lijn AQ: y=(-a/q)(x-q)en de lijn
RP:y=(a/2q)(x+q).Snijpunt geeft de co÷rdinaten van P:x=1/3q en y=2a/3.
Probeer ook eens het algemene geval:A(a,b)met a0 en b0,B(0,0)en C(c,0) met c0,Q(q,0)met 0qc en R(2c-q,0).

kn
Vragen naar aanleiding van dit antwoord? Klik rechts..!
woensdag 20 mei 2009
 Re: Meetkundige plaats: eliminatie van de parameter 



klein |  normaal |  groot

home |  vandaag |  bijzonder |  twitter |  gastenboek |  statistieken |  wie is wie? |  colofon

©2001-2021 WisFaq - versie 3