De digitale vraagbaak voor het wiskundeonderwijs

home |  vandaag |  gisteren |  bijzonder |  prikbord |  gastenboek |  wie is wie? |  contact

HOME

samengevat
vragen bekijken
een vraag stellen
hulpjes
zoeken
FAQ's
links
twitter
boeken
help

inloggen

colofon

  \require{AMSmath} Printen

Particuliere oplossingen voor niet-homogene recurrentievergelijkingen

Hallo,

Er werd me verteld dat, gegeven een niet-homogene recurrentievergelijking, de particuliere oplossing gebaseerd is op f(n) uit het rechterlid.

Nu heb ik zo'n lijstje met particuliere oplossingen voor f(n) = c, f(n) = nt, f(n) = rn, f(n) = rn∑nt, maar ik vind niet meteen terug hoe de particuliere oplossing eruit ziet indien f(n) een combinatie van de vorige is, bvb. f(n) = (n+1)2, f(n) = 3(2n)+(2n), f(n) = n3+n, ...

Ik heb ook in bepaalde oefeningen gemerkt dat de constante term mag genegeerd zou mogen worden, klopt dit?

Alvast bedankt!

Wouter
Student universiteit BelgiŽ - zondag 10 mei 2009

Antwoord

De vergelijkingen zijn waarschijnlijk lineair; de oplossing bij f(n)=(n+1)2 is dan de som van drie afzonderlijke oplossingen: die bij n2, die bij 2n en die bij 1; de oplossing bij 2n is twee maal de oplossing van die bij n.
In het algemeen: als je particuliere oplossingen hebt, zeg p1 bij f1 en p2 bij f2, dan is p1+p2 een particuliere oplossing bij f1+f2 en a∑p1 is een particuliere oplossing bij a∑f1.

kphart
Vragen naar aanleiding van dit antwoord? Klik rechts..!
dinsdag 19 mei 2009



klein |  normaal |  groot

home |  vandaag |  bijzonder |  twitter |  gastenboek |  wie is wie? |  colofon

©2001-2021 WisFaq - versie 3