De digitale vraagbaak voor het wiskundeonderwijs

home |  vandaag |  gisteren |  bijzonder |  prikbord |  gastenboek |  wie is wie? |  contact

HOME

samengevat
vragen bekijken
een vraag stellen
hulpjes
zoeken
FAQ's
links
twitter
boeken
help

inloggen

colofon

  \require{AMSmath} Printen

Toepassing integralen

Beste, veronderstel dat t jaar vanaf nu, een investeringsplan winst zal genereren aan een tempo van w1 (t) = 100 + t^2 duizend euro per jaar, terwijl een ander plan een winst zal genereren van w2 (t) = 220 + 2t duizend euro per jaar. We veronderstellen verder dat er geen intresten zijn. Na hoelang zal de totale winst gerealiseerd met het eerste investeringsplan groter worden dan die verkregen met het tweede plan ? ;
Ik dacht: 'groter worden' = mate van verandering van integraal (w1 (t) - w2 (t)) = d/ dt [integraal (w1 (t) - w2(t)] = w1 (t) - w2 (t) 0 ;
daarnaast staat er ook een bijkomende vraag: 'voor hoelang zal het tweede plan voordeliger zijn dan het eerste', hier dacht ik dat je moest bepalen voor welke T (veronderstel dat we bij t = 0 beginnen) integraal (w2 (t) - w1 (t)) = 0 ? ;

groeten ;

Tom
Student universiteit BelgiŽ - woensdag 6 mei 2009

Antwoord

Beste Tom,
Waarom zou u de vraag niet letterlijk nemen? Er wordt gevraagd naar de totale winst, en dat is de som van de winsten w(t)*Dt per klein tijdsinterval van Dt jaar, dus de integraal, en niet de verandering van de integraal.
Dus:
TW1(t) = Ú0t w1(t) dt = Ú0t (100 + t2) dt = 100t + t3/3, en
TW2(t) = Ú0t w2(t) dt = Ú0t (220 + 2t) dt = 220t + t2.
Nu is TW1(t) groter dan TW2(t) zodra 100t + t3/3 220t + t2.
Tot dan is het tweede plan voordeliger, daarna het eerste.

(Schets de grafiek van f(t)=TW1(t)-TW2(t); de nulpunten vind je uit t*(t2-3t-360) = 0, dus het positieve nulpunt is t = 3/2 + (3/2)÷161. Dus na ruim twintig jaar wordt de totale winst van het eerste plan groter.)

Wie is wie?
Vragen naar aanleiding van dit antwoord? Klik rechts..!
donderdag 14 mei 2009



klein |  normaal |  groot

home |  vandaag |  bijzonder |  twitter |  gastenboek |  wie is wie? |  colofon

©2001-2020 WisFaq - versie IIb