De digitale vraagbaak voor het wiskundeonderwijs

home |  vandaag |  gisteren |  bijzonder |  prikbord |  gastenboek |  wie is wie? |  contact

HOME

samengevat
vragen bekijken
een vraag stellen
hulpjes
zoeken
FAQ's
links
twitter
boeken
help

inloggen

colofon

  \require{AMSmath} Printen

Driehoek met kleinste omtrek

Ik moet iets bewijzen, maar ik heb geen idee hoe, kunt u me helpen?

In DABC bevind zich op zijde AB het punt P (DABC is scherphoekig). We spiegelen P over AC en het beeld noemen we R. We spiegelen P ook over BC, het beeld noemen we T. Waar RT AC snijdt, bevind zich D en waar RT BC snijdt, bevind zich E. We moeten nu bewijzen waneer de omtrek van DDEP het kleinst is.

Alvast bedankt

marco
Leerling bovenbouw havo-vwo - donderdag 15 januari 2009

Antwoord

Marco,
Je moet een paar dingen zelf bewijzen en wel:RC=CT=CP, RD=DP en ET=EP,dus RT=omtrek driehoek DEP.Verder is hoek RCT= 2 maal hoek ACB.Hoek RCT verandert dus niet van grootte als punt P van plaats verandert.Pas in driehoek RCT de cosinus regel toe.Dit geeft:RT2=2RC2(1-cos RCT).
Conclusie:RT zo klein mogelijk als RC=CP zo klein mogelijk,dus CP hoogtelijn op AB.

kn
Vragen naar aanleiding van dit antwoord? Klik rechts..!
donderdag 22 januari 2009



klein |  normaal |  groot

home |  vandaag |  bijzonder |  twitter |  gastenboek |  wie is wie? |  colofon

©2001-2021 WisFaq - versie 3