De digitale vraagbaak voor het wiskundeonderwijs

home |  vandaag |  gisteren |  bijzonder |  prikbord |  gastenboek |  wie is wie? |  contact

HOME

samengevat
vragen bekijken
een vraag stellen
hulpjes
zoeken
FAQ's
links
twitter
boeken
help

inloggen

colofon

  \require{AMSmath} Printen

Re: Re: Differentiaalvergelijking van een worp met luchtweerstand

 Dit is een reactie op vraag 56891 
Met de gegeven afleiding is nog steeds iets mis. Immers,
in de uitddrukking "(1/k)ln(-w2) - (1/k)ln(u'2-w2)"
bestaan beide natuurlijke logaritmen niet!
In beide gevallen wordt er getracht de natuurlijke logaritme van een negatief getal te nemen (u2'w2) en dat kan niet.
Dit probleem breekt mij ook op als ik mijn (en oook uw0 DV rechtstreeks probeer op te lossen. Ik krijg dan
dv/(v2-w2)=kdt, wat op den duur leidt tot
ln|(v-w)/(v+w)|=2kwt. Omdat altijd wv komt er (w-v)/(w+v)=e^(2kwt) en dus v(t) = w[e^(2kwt-1)/(e^(2kwt)+1].
Voor t levert dit de maximaal haalbare snelheid w, en op t =0 moet v(0)=0 zijn en dat klopt ook.
Echter opnieuw integreren om een uitdrukking voor x(t) te vinden stuit op problemen; wederom i.v.m. tekenproblemen bij de natuurlijke logaritme.

M. Wie
Docent - maandag 27 oktober 2008

Antwoord

Toch niet hoor. Je hebt ergens wel gelijk, maar ik kan ook meteen argumenteren dat een primitieve van 1/x gegeven wordt door ln |x|, niet ln x. Volstaat dat of wil je het nog verder drijven?

Wie is wie?
Vragen naar aanleiding van dit antwoord? Klik rechts..!
maandag 27 oktober 2008



klein |  normaal |  groot

home |  vandaag |  bijzonder |  twitter |  gastenboek |  wie is wie? |  colofon

©2001-2020 WisFaq - versie IIb