|
|
\require{AMSmath}
Vergelijking maken bij een lijn
Ik snap helemaal niks van het maken van een formule bij een grafiek waarin een rechte lijn is getekend. Kan iemand mij helpen? Alvast bedankt! Anne
Anne
Leerling bovenbouw havo-vwo - zondag 1 december 2002
Antwoord
Hoi Anne,
Het is niet moeilijk om een functie die horizontaal loopt in een functievoorschrift te gieten, want de y-as wordt dan altijd gesneden in één punt en de y-waarde (=0rdinaat) van dat punt is de functie zelf.
Bijvoorbeeld de functie f(x)=3 loopt horizontaal en snijdt de y-as in het punt (0,3).
Een eerstegraadsfunctie oftewel een lineaire functie heeft als algemeen functievoorschrift y = ax + b.
Die a is de rico (=richtingscoëfficiënt ookwel hellingsgetal genoemd), a < 0 $\Rightarrow$ de functie is dalend, a > 0 $\Rightarrow$ functie is stijgend. Indien a = 0 dan krijg je de situatie die ik als eerste heb beschreven. b mag trouwens wel 0 zijn, maar a en b$\in$$\mathbf{R}$ (en voor eerstegraadsfunctie a $\ne$ 0). Die a kun je aflezen m.b.v. het hoogteverschil / lengteverschil. Dus je neemt als x-interval bijvoorbeeld 0 tot 1 (dat rekent makkelijk) en de bijbehorende y-waardes zijn dan uiteraard f(0) en f(1). Noem de laagste x-waarde x1 en de hoogste x-waarde x2. De bijbehorende y-waarde van x1 wordt y1 en idem voor x2.
De rico wordt dan (y2 - y1) / (x2 - x1). Nu moet je nog die b zien te berekenen. Neem een gemakkelijk punt op de grafiek (met gemakkelijk bedoel ik dat je de x- en y-coördinaten gemakkelijk kunt aflezen). Je vertrekt van de basisformule ax + b, en vult de gevonden 'a' in, je vult de x-waarde in die je net gekozen hebt en stelt die functie gelijk aan de y-waarde die je net gekozen hebt. Nu is het gewoon een kwestie van uitrekenen.
Ik zal ter verduidelijking hieronder nog een plaatje zetten.
Je ziet dat bij x=0 de y-waarde 2 is en dat bij x=1 de y-waarde 4 is. De rico is dan (4 - 2) / (1 - 0) = 2.
Een gemakkelijk punt is x=-1 (want daar is y=0). De rico was 2, en x=-1 dus blijft er over -2 + b = 0. Dus b = 2. De formule wordt dan y = 2x + 2.
Indien er nog vragen zijn, stel ze gerust!
|
Vragen naar aanleiding van dit antwoord? Klik rechts..!
zondag 1 december 2002
|
|
home |
vandaag |
bijzonder |
gastenboek |
statistieken |
wie is wie? |
verhalen |
colofon
©2001-2024 WisFaq - versie 3
|