De digitale vraagbaak voor het wiskundeonderwijs

home |  vandaag |  gisteren |  bijzonder |  prikbord |  gastenboek |  wie is wie? |  contact

HOME

samengevat
vragen bekijken
een vraag stellen
hulpjes
zoeken
FAQ's
links
twitter
boeken
help

inloggen

colofon

  \require{AMSmath} Printen

Taylor reeks van een integraalfunctie

Gegroet,

Ik moet de taylorreeks berekenen voor de volgende functie f(x) waarbij f(0)=0 en de functie gegeven wordt door

f(x) = $\int{}$ (sin t)/t dt voor x $\in\mathbf{R}$ en de integraal loopt van 0 tot x(wist het tekentje niet voor de grenzen)
En bij de opgave staat dat je de taylorreeks in sin t moet gebruiken
En ergens in men cursus staat ook dat als je zo een integrand differentieert je dan de functie krijgt met x in de plek, dus in dit geval sin x/x ; f(x) in de opgave wordt dan f'(x)

dus heb ik eerst de taylorreeks ontwikkeld voor sin t en dan gedeeld door t, en zo 1 - t2/6 + t4/120 + ... gevonden, dan beide leden van de vergelijking uit de opgave geddiferentieerd en dan :

f'(x) = 1- x2/6 + x4/120 ( want volgens die formule uit de cursus was het dus gewoon de functie onder het integraalteken, maar de parameter veranderd)

en dan met deze afgeleide heb ik dan de taylorreeks opgesteld, en bv f''(x) gewoon uit die reeks gehaald door f'(x) nog eens te differentieren en ga zo maar door

Klopt dit eigenlek nog, want vind dit toch wel een vreemde oefening met dat taylor,integraal en differentiaal gedoe.
Aldus bekwam ik voor de Taylorreeks van fx in 0 iets van een
f(x) = x - x3/36 + ...

Zou iemand kunnen zeggen of ik juist zit?

Dank bij voorbaat

Dirk
Student universiteit BelgiŽ - dinsdag 29 juli 2008

Antwoord

Onnodige capriolen. Tot het bepalen van de taylorreeks van sin(t)/t ben ik akkoord. Integreer daarna gewoon

1) sin(t)/t, wat per definitie het gevraagde is
2) de taylorreeks termsgewijs

Een eigenschap van taylorreeksen zegt dan dat het convergentiegebied door die termsgewijze integratie hetzelfde blijft en dat de reekssom inderdaad de integraal is van de originele reekssom.

Resultaat: f(x) = x - x3/18 + x5/600 - ...

Wie is wie?
Vragen naar aanleiding van dit antwoord? Klik rechts..!
dinsdag 29 juli 2008



klein |  normaal |  groot

home |  vandaag |  bijzonder |  twitter |  gastenboek |  wie is wie? |  colofon

©2001-2021 WisFaq - versie 3