De digitale vraagbaak voor het wiskundeonderwijs

home |  vandaag |  gisteren |  bijzonder |  gastenboek |  wie is wie? |  verhalen |  contact

HOME

samengevat
vragen bekijken
een vraag stellen
hulpjes
zoeken
FAQ
links
twitter
boeken
help

inloggen

colofon

  \require{AMSmath} Printen

Wentelen om y-as

Ik moet de inhoud berekenen van 17,5Cos(0.5x) tussen de grenzen 0 en p gewenteld om de y-as. Hiervoor moet ik eerst de formule omschrijven naar de inverse. Maar hoe gaat dat met een Cosinus? Ik kan hier nergens rekenregels voor vinden. Als ik de inverse heb kan ik de inhoud berekenen door pòx2 dy tussen de grenzen 0 en p. Maar wat zijn de regels voor het primitiveren van bv (17,5cos(.05x))2?

Koen v
Student hbo - maandag 7 januari 2008

Antwoord

De inverse functie van een cosinus is natuurlijk de boogcosinus of arcus cosinus (=arccos).

17,5cos(0,5x) = y = x = 2·arccos(y/17.5)

Er geldt dus dat

pòx2dy = 4pò(arccos(y/17.5))2 dy

om dit op te lossen substitueren we er terug x in, met dy = -8,25·sin(0,5x) dx

pòx2dy = -8,25pòx2 sin(0,5x)dx

dit kunnen we nu verder oplossen met partiële integratie,algemeen geldt immers

òx dy = ò(d(xy) - y dx) = xy - òy dx

als we dit op onze integraal toepassen, krijgen we

pòx2dy = 17,5px2 cos(0,5x) - 35pòx cos(0,5x)dx
= 17,5px2 cos(0,5x) - 70px sin(0,5x) + 70 pòsin(0,5x)dx
= 17,5px2 cos(0,5x) - 70px sin(0,5x) - 140p cos(0,5x)

Als we terug y invullen krijgen we
pòx2dy = 4py·(arccos (y/17.5))2 - 8p arccos(y/17,5)·Ö(17,52-y2) - 8py

Nu moeten we nog de grenzen invullen, de integraal gaat van 0 naar p.
4p2·(arccos (p/17.5))2- 8p·arccos(p/17,5)·Ö(17,52-p2)-8p2+ 70p2

Nu is arccos(p/17,5) 1.3902982.
Het volume is dus ongeveer gelijk aan 66,9642494. Maar op dit numeriek resultaat kan wel een rekenfout zitten. De formule is echter wel juist.

FvS
Vragen naar aanleiding van dit antwoord? Klik rechts..!
maandag 7 januari 2008



home |  vandaag |  bijzonder |  gastenboek |  statistieken |  wie is wie? |  verhalen |  colofon

©2001-2024 WisFaq - versie 3