De digitale vraagbaak voor het wiskundeonderwijs

home |  vandaag |  gisteren |  bijzonder |  prikbord |  gastenboek |  wie is wie? |  contact

HOME

samengevat
vragen bekijken
een vraag stellen
hulpjes
zoeken
FAQ's
links
twitter
boeken
help

inloggen

colofon

  \require{AMSmath} Printen

Integreren van goniometrische functie

Beste wisfaq,
ik weet niet of ik de juiste benadering gebruik voor het oplossen van de integraal:
x24-x2dx
hierbij gebruik ik de goniometrische substitutie.
ik stel: x=2sinv
dus: x^2=4sin2x
en dx=2cosvdv
verder geldt dat sinv=(x/2) en cosv=(4-x^2 / 2

dan volgt:
x24-x2dx=4sin2v(4-4sinv) 2cosvdv=
8sin2vcosv(4-4sinv)dv=
8sin2vcosv2|cosv|dv=16sin2vcos2vdv=
.....
16(1/8 v - 1/32 sin(4v))+C

hier moet ik sin4v vereenvoudigen, maar dit lukt mij niet!?!
als ik de som en verschil formule toepas, wordt mijn oplossing niet eenvoudiger:
sin(4v)=sin2v*cos2v+cos2v*sin2v=sin22v*cos2v
kunt u mij helpen om de oplossing te vinden?
en is er een standaard formule
om sin(ax) om te zetten naar sinxcosx
(denkend aan) sin2x=2sinxcosx

bvd,

Carlos

carlos
Student universiteit - zondag 9 december 2007

Antwoord

Carlos,
sin4v=2sin2vcos2v=4sinvcosv(1-2sin2v)=4(x/2)((4-x2)/2)(1-2x2/4).
Hopelijk zo tevreden.

kn
Vragen naar aanleiding van dit antwoord? Klik rechts..!
zondag 9 december 2007
 Re: Integreren van goniometrische functie 



klein |  normaal |  groot

home |  vandaag |  bijzonder |  twitter |  gastenboek |  wie is wie? |  colofon

©2001-2020 WisFaq - versie IIb