De digitale vraagbaak voor het wiskundeonderwijs

home |  vandaag |  gisteren |  bijzonder |  prikbord |  gastenboek |  wie is wie? |  contact

HOME

samengevat
vragen bekijken
een vraag stellen
hulpjes
zoeken
FAQ's
links
twitter
boeken
help

inloggen

colofon

  \require{AMSmath} Printen

Oefening hypothesetesten

Oefening 1. We weten dat een zekere auteur zinnen schrijft met een lengte van 31.5 woorden. De standaarddeviatie van de zinslengte is 6.8 woorden. De zinslengte is normaal verdeeld. We bekijken nu een willekeurige andere tekst en zien dat de gemiddelde lengte van 80 zinnen gelijk is aan 34 woorden. Toets de hypothese dat deze tekst van dezelfde auteur als hierboven zou kunnen afkomstig zijn. Gebruik a = 0.01.

Oplossing. Gevraagd wordt om de hypothese te toetsen dat de tekst van dezelfde auteur afkomstig is. We definiėren µ als de gemiddelde lengte van de zinnen die door die auteur werden geschreven. We formuleren nu de hypothesen:

H0 : µ = 31.5, en H1 : µ = 31.5.
Uit de tekst weten we dat x = 34, n = 80 en s = 6.8. De hypothesetest wordt nu met significantie a:
x ? µ - za/2
s
vn;µ + za/2
s
vn, dan aanvaarden we de hypotheseH0 en verwerpen weH1 niet. In de tabellen van de standaardnormale verdeling zien we dat za/2 = 2.57. Aangezien alle waarden nu gekend zijn, kunnen we het aanvaardingsgebied berekenen waaraan µ dient getoetst te worden:

(31.5 - 2.57
6.8
v80 ; 31.5 + 2.57
6.8
v80 = [29.546, 33.454].)

Nu is mijn vraag: van waar halen ze die 2,57. Ik heb dit opgezocht in die tabellen maar bij 2,57 vind ik dan het getal 0,4949. Ik weet niet echt wat dit ermee te maken heeft. Hopelijk kan iemand mij hier mee helpen.
Alvast bedankt

Nichol
Student universiteit Belgiė - zaterdag 1 december 2007

Antwoord

Beste Nicholas,
Ten eerste zal je bedoelen dat je bij 2,57 in je tabel 0,9949 vindt (niet 0,4949).
1-0,9949=0,0051.
Omdat je met een tweezijdige toets te maken hebt (de vraag is: Is de tekst hetzelfde?)moet je die 1% verdelen over twee kanten.
Vandaar dat je moet nemen 0,005.
Dan vindt je inderdaad de grenzen 31,5±1,954.

ldr
Vragen naar aanleiding van dit antwoord? Klik rechts..!
zaterdag 1 december 2007
 Re: Oefening hypothesetesten 



klein |  normaal |  groot

home |  vandaag |  bijzonder |  twitter |  gastenboek |  wie is wie? |  colofon

©2001-2021 WisFaq - versie 3