De digitale vraagbaak voor het wiskundeonderwijs

home |  vandaag |  gisteren |  bijzonder |  gastenboek |  wie is wie? |  verhalen |  contact

HOME

samengevat
vragen bekijken
een vraag stellen
hulpjes
zoeken
FAQ
links
twitter
boeken
help

inloggen

colofon

  \require{AMSmath} Printen

Oplossen eerste orde lineaire inhomogene differentiaalvergelijking

Ik heb de volgende Differentiaalvergelijking:
6y' + 5y = 3t en y(0) = 1.
Het uitrekenen d.m.v. de GRM gaat gemakkelijk. Echter: hoe los ik dit vraagstuk op zonder rekenmachine?

Jan
Student hbo - woensdag 12 september 2007

Antwoord

Ik vrees dat die afleiding net iets te ingewikkeld voor je zal zijn, hoewel het een heel klassieke opgave is voor wie een cursus differentiaalvergelijkingen volgt. Voor de volledigheid:

1) Oplossen homogene vergelijking: 6y'+5y=0

karakteristieke vergelijking: 6z+5=0 - z = -5/6
algemene oplossing: y = C.exp(-5t/6)

2) Vinden van een willekeurige oplossing van de volledige vergelijking: 6y'+5y=3t

Een veelterm van de eerste graad proberen is hier een goed idee: y = at+b. Die voldoet aan de vergelijking als

6a + 5(at+b) = 3t, voor alle t
5at + (6a+5b) = 3t

5a = 3
6a + 5b = 0

a = 3/5
b = -18/25

3) De algemene oplossing van de volledige vergelijking is dus

y = C.exp(-5t/6) + (3/5)t - 18/25

De constante C wordt dan bepaald uit de voorwaarde y(0)=1, dus

1 = C - 18/25
C = 43/25

zodat de uiteindelijke oplossing gegeven wordt door

y = (43/25).exp(-5t/6) + (3/5)t - 18/25

Wie is wie?
Vragen naar aanleiding van dit antwoord? Klik rechts..!
zondag 16 september 2007
 Re: Oplossen eerste orde lineaire inhomogene differentiaalvergelijking 



home |  vandaag |  bijzonder |  gastenboek |  statistieken |  wie is wie? |  verhalen |  colofon

©2001-2024 WisFaq - versie 3