De digitale vraagbaak voor het wiskundeonderwijs

home |  vandaag |  gisteren |  bijzonder |  prikbord |  gastenboek |  wie is wie? |  contact

HOME

samengevat
vragen bekijken
een vraag stellen
hulpjes
zoeken
FAQ's
links
twitter
boeken
help

inloggen

colofon

  \require{AMSmath} Printen

Moeilijke integraal

Dag Wisfaq team,
Ik heb behoorlijk last met volgende integraal:
$\int{}$xexsin(x)dx=

PartiŽle integratie bracht me tot het volgende:
stel ex=u ; du=exdx en dv= xsin(x)dx en v=-xcos(x)+sin(x)
I= -xexcos(x) +exsin(x) -$\int{}$(-xcos(x)+sin(x))exdx
I= -xexcos(x)+exsin(x)+(∑)$\int{}$xcos(x)exdx-(∑∑)$\int{}$exsin(x)dx
Uitwerken (∑) geeft:
ex(xsin(x)+cos(x))-$\int{}$(xsin(x)+cos(x))exdx
Uitwerken (∑∑) geeft:
$\int{}$exsin(x)dx
=-$\Delta$exd(cos(x))
=-excos(x)+$\int{}$cos(x)exdx
En hoe moet het nu verder of ben ik verkeerd bezig.
Vriendelijke groeten,

Lemmen
Iets anders - zaterdag 28 juli 2007

Antwoord

Beste Rik,

Het is wat lastig schrijfwerk en wordt ook nogal snel onduidelijk. Ik begin liever even van in het begin. Je kan de partiŽle integratie natuurlijk op meerdere manieren uitvoeren, ik kies er voor om de factor x via afleiden direct kwijt te spelen.

Ik noteer g = $\int{}$sin(x)exdx, dan volgt:

$\int{}$xsin(x)exdx = $\int{}$xdg = xg - $\int{}$gdx

De integraal is dus volledig opgelost door g en $\int{}$gdx te bepalen.
Daarbij is g zelf opnieuw met partiŽle integratie te doen.

mvg,
Tom

Wie is wie?
Vragen naar aanleiding van dit antwoord? Klik rechts..!
zaterdag 28 juli 2007



klein |  normaal |  groot

home |  vandaag |  bijzonder |  twitter |  gastenboek |  wie is wie? |  colofon

©2001-2020 WisFaq - versie IIb