De digitale vraagbaak voor het wiskundeonderwijs

home |  vandaag |  gisteren |  bijzonder |  prikbord |  gastenboek |  wie is wie? |  contact

HOME

samengevat
vragen bekijken
een vraag stellen
hulpjes
zoeken
FAQ's
links
twitter
boeken
help

inloggen

colofon

  \require{AMSmath} Printen

Integraal onbekende methode

Hallo, ik zit vast met een integraalopgave waarvan ik niet goed weet welke methode ik moet gebruiken. De opgave is : Úx/÷(1+4x)dx
Ik dacht eerst om 1+4x = t maar wanneer ik dan verder oplos dan kom ik dx=dt uit en dan blijf ik zitten met de x die in mijn noemer staat.
Daarna dacht ik te werken met partiŽle integratie, maar dat lijkt al helemaal niet te lukken.

Een andere integraal dacht ik op te lossen met rationale breuken. De opgave Údx/(x8+ x6).
Ik kan dit verder uitwerken door
Údx/x6(x2+1)

Daarna = A/x + B/x2+ C/x3 + D/x4+ E/x5 + F/x6+ (g(x)+ h)/(x2+1)

= Ax5+Ax2+A ...
maar dan zit ik helemaal in de rats omdat ik niet weet hoe ik verder de waarden van mijn A - H te weten kom en zo kan ik niet verder het antwoord eruit halen.

Hopelijk kunnen julie mij helpen,
Dank bij voorbaat
5

Melani
Student universiteit BelgiŽ - dinsdag 17 juli 2007

Antwoord

Beste Melanie,

Om de vierkantswortel kwijt te geraken kan je 1+4x = t2 stellen, dan is 4dx = 2tdt, dus dx = tdt/2 en x = (t2-1)/4. De integraal wordt:

Ú t(t2-1)/(8t) dt = 1/8 Ú t2-1 dt

Voor de tweede schrijf je je voorstel tot splitsing terug als ťťn breuk (met de oorspronkelijke noemer). Groepeer per gelijke machten van x en vergelijk met de oorspronkelijke teller (die was 1). Hieruit haal je een stelsel in a,...,h.

mvg,
Tom

Wie is wie?
Vragen naar aanleiding van dit antwoord? Klik rechts..!
woensdag 18 juli 2007



klein |  normaal |  groot

home |  vandaag |  bijzonder |  twitter |  gastenboek |  wie is wie? |  colofon

©2001-2020 WisFaq - versie IIb