De digitale vraagbaak voor het wiskundeonderwijs

home |  vandaag |  gisteren |  bijzonder |  prikbord |  gastenboek |  wie is wie? |  contact

HOME

samengevat
vragen bekijken
een vraag stellen
hulpjes
zoeken
FAQ's
links
twitter
boeken
help

inloggen

colofon

  \require{AMSmath} Printen

Kegelsnede parabool, ellips en hyperbool

Hallo,

Ik begrijp niet hoe je aan de parametervergelijking komt van de parabool en ellips. De algemene vergelijking ken ik (y2=2ax en (x2/a2)+(y2/b2)=1), maar hoe komt men aan de parametervergelijking voor de parabool (x=2at2 en y=2at)
en ellips (x=a cost en y=b sint)?

Mvg

Jole
Student Hoger Onderwijs BelgiŽ - donderdag 14 juni 2007

Antwoord

Hallo

1. Parabool: y2=2ax dus x = y2/2a
Stel nu y=2ax
Dan x = 4a2t2/2a = 2at2

2. Ellips
Neem een punt P(x0,y0) op de ellips en projecteer x0 verticaal op de grote cirkel (x2+y2=a2) en projecteer y0 horizontaal op de kleine cirkel (x2+y2=b2)
Je kunt dan aantonen dat deze twee punten (op de grote en kleine cirkel) op een rechte liggen door de oorsprong. Noem t de hoek van deze rechte met de x-as.
Dus x0 = a.cos(t) en y0 = b.sin(t)
Dit geldt voor alle punten van de ellips.
q51320img1.gif

Wie is wie?
Vragen naar aanleiding van dit antwoord? Klik rechts..!
donderdag 14 juni 2007



klein |  normaal |  groot

home |  vandaag |  bijzonder |  twitter |  gastenboek |  statistieken |  wie is wie? |  colofon

©2001-2021 WisFaq - versie 3