De digitale vraagbaak voor het wiskundeonderwijs

home |  vandaag |  gisteren |  bijzonder |  prikbord |  gastenboek |  wie is wie? |  contact

HOME

samengevat
vragen bekijken
een vraag stellen
hulpjes
zoeken
FAQ's
links
twitter
boeken
help

inloggen

colofon

  \require{AMSmath} Printen

Oppervlakte van een rechthoek in een ellips

Beste,


Gevraagd is welke afmetingen een rechthoek moet hebben, zodat diens oppervlakte maximaal is en de rechthoek gelegen is in de oppervlakte beschreven door.
x2/4a2 + y2/a2 = 1.

(met a $\in$ $\mathbf{R}$+0)

Als start heb ik genomen dat xy (oppervlakte rechthoek) dus maximaal moet zijn onder de nevenvoorwaarde van x2/4a2 + y2/a2 = 1.
Ik heb hiervan de Lagrange-functie opgesteld en dan heb ik de nulpunten gezocht.
Ik kom uit dat x = 2y = √(2a2)

Maar als ik dit eens controleer met fictieve getallen lijkt dit niet te kloppen...

Kunnen jullie me helpen.

(PS: via substitie kom ik er ook niet, omdat ik een tegenstrijdig gegeven tegenkom)

Dieter
Student universiteit BelgiŽ - zondag 3 juni 2007

Antwoord

Beste Dieter,

Je oplossing lijkt me toch te kloppen, uiteraard heb je ook de negatieve oplossingen (symmetrie). De vier hoekpunten liggen dus op:

(√2.a,Ī√2/2.a) en (-√2.a,Ī√2/2.a)

Misschien doe je iets mis met je getallenvoorbeelden.

mvg,
Tom

Wie is wie?
Vragen naar aanleiding van dit antwoord? Klik rechts..!
zondag 3 juni 2007



klein |  normaal |  groot

home |  vandaag |  bijzonder |  twitter |  gastenboek |  wie is wie? |  colofon

©2001-2021 WisFaq - versie 3