De digitale vraagbaak voor het wiskundeonderwijs

home |  vandaag |  gisteren |  bijzonder |  prikbord |  gastenboek |  wie is wie? |  contact

HOME

samengevat
vragen bekijken
een vraag stellen
hulpjes
zoeken
FAQ's
links
twitter
boeken
help

inloggen

colofon

  \require{AMSmath} Printen

Driehoek

Hoe bereken je de oppervlakte van een driehoek ABC?
gegeven: A(a,b) C(f,g) B(c,d)
Ik heb de formule gevonden, maar weet niet hoed je eraan komt..
formule: (1/2)|(ad+cg+fg)-(ag+cb+fd)|

Jole
Student Hoger Onderwijs BelgiŽ - zaterdag 14 april 2007

Antwoord

Volgens mij klopt deze formule niet. Op symmetriegronden zouden alle 6 de "letters" even vaak voor moeten komen.
Ik kom op (1/2)|(ad+cg+bf)-(ag+cb+fd)|

Afleiding:
Vector AB=(c-a,d-b)
Vector AC=(f-a,g-b)
De oppervlakte is 1/2|ABńAC| waarbij ń het uitwendig product voorstelt.
De oppervlakte is dus 1/2|(c-a)(g-b)-(d-b)(f-a)| wat zich laat herleiden tot (1/2)|(ad+cg+bf)-(ag+cb+fd)|

Wie is wie?
Vragen naar aanleiding van dit antwoord? Klik rechts..!
zaterdag 14 april 2007



klein |  normaal |  groot

home |  vandaag |  bijzonder |  twitter |  gastenboek |  statistieken |  wie is wie? |  colofon

©2001-2021 WisFaq - versie 3