De digitale vraagbaak voor het wiskundeonderwijs

home |  vandaag |  gisteren |  bijzonder |  prikbord |  gastenboek |  wie is wie? |  contact

HOME

samengevat
vragen bekijken
een vraag stellen
hulpjes
zoeken
FAQ's
links
twitter
boeken
help

inloggen

colofon

  \require{AMSmath} Printen

11 is een deler van 33n +1+75n-1

Hoi!
Ik moet een bewijs door volledige inductie opstellen.
Ik heb gekozen voor dit bewijs en heb al enkele stappen gezet maar zit vast. Kunenn jullie me helpen? Dit zijn de stappen die ik al heb.Dit tekentje staat voor tot de macht: ^

Geg.: n met uitzondering van 0
Teb: 11 is een deler van ((3 tot de macht 3n+1) + 7 (5 tot de macht (n-1))).
Bew: 1) Basisstap: n=1:
3^(31+1) + 751-1 = 34+7 =88
11 is een deler van 88 want 811=88
2) Inductiestap van n=k naar n=k+1
Hypothese:
11 is een deler van 3^((k+1)+1)+ 75^((k+1)-1)
=27^(3k+1)+755k-1
=53^(3k+1)+ 575k-1+ 223^(3k+1)
Voor dat laatste deel 223^(3k+1) is dat in orde want 11 is een deler van 22.
Maar hoe doe je dit dan voor dat eerste deel? Je zou moeten kunnen bewijzen dat die 2 leden ook deelbaar zijn door 11...
Kunnen jullie me daarbij helpen?

Servaa
3de graad ASO - zondag 3 december 2006

Antwoord

Je bent er bijna. Haal de 5 buiten haakjes en dan heb je 5(33k+1+75k-1) en dat is, bij inductieveronderstelling deelbaar door 11.

kphart
Vragen naar aanleiding van dit antwoord? Klik rechts..!
zondag 3 december 2006



klein |  normaal |  groot

home |  vandaag |  bijzonder |  twitter |  gastenboek |  wie is wie? |  colofon

©2001-2021 WisFaq - versie 3