De digitale vraagbaak voor het wiskundeonderwijs

home |  vandaag |  gisteren |  bijzonder |  gastenboek |  wie is wie? |  verhalen |  contact

HOME

samengevat
vragen bekijken
een vraag stellen
hulpjes
zoeken
FAQ
links
twitter
boeken
help

inloggen

colofon

  \require{AMSmath} Printen

Driehoeksongelijkheid moduli

He,

Kan er mij iemand zeggen hoe je bewijst dat voor alle complexe getallen het volgende geldt:

|z1+z2||z1|+|z2| (de zgn. driehoeksongelijkheid).

Ik probeerde al de klassieke manier van bewijzen voor deze ongeljkheid, namelijke door te stellen dat -|a|a|a|, maar volgens mij is dat hier niet toepasbaar omdat je complexe getallen nu eenmaal niet kan vergelijken. Weet iemand hoe het dan wel moet ?

Stijn
Student universiteit BelgiŽ - maandag 16 oktober 2006

Antwoord

Bereken van allebei het kwadraat en vergelijk die kwadraten.
Rechts krijg je |z1|2+|z2|2+2|z1||z2|
Het kwadraat van de linkerkant is gelijk aan het product van (z1+z2) en zijn complex geconjugeerde; als je dat uitwerkt komt er |z1|2+|z2|2+(z1∑cg(z2)+cg(z1)∑z2) (met cg bedoel ik complex geconjugeerde); het stuk tussen haakjes is gelijk aan tweemaal Re(z1∑z2), daarvan lijkt me duidelijk dat het kleiner dan is of gelijk aan 2|z1||z2|.

kphart
Vragen naar aanleiding van dit antwoord? Klik rechts..!
dinsdag 17 oktober 2006



home |  vandaag |  bijzonder |  gastenboek |  statistieken |  wie is wie? |  verhalen |  colofon

©2001-2023 WisFaq - versie 3