De digitale vraagbaak voor het wiskundeonderwijs

home |  vandaag |  gisteren |  bijzonder |  prikbord |  gastenboek |  wie is wie? |  contact

HOME

samengevat
vragen bekijken
een vraag stellen
hulpjes
zoeken
FAQ's
links
twitter
boeken
help

inloggen

colofon

  \require{AMSmath} Printen

Lineaire tweede orde dv

Beschouw volgende DV
x''(t) + a x'(t) + b x(t) = f(t)
met a,b = cte en f(t) is een gegeven functie

Neem aan dat x(t) = (-t +t2)* e^(3t) een opl is van deze DV en dat x1(t) = e^(3t) en x2 = e^(-2t)oplossingen zijn van de bijhorende homogene vgl. Bepaal hieruit a, b en f(t)
Welnu, a en b heb ik gevonden (a= -2 en b= -3); maar hoe vind je f(t) nu?
Dank bij voorbaat

Mario
Student universiteit BelgiŽ - donderdag 24 augustus 2006

Antwoord

Dat is eigenlijk niet meer zo moeilijk: je weet dat x(t)=(-t+t2) e^(3t) een oplossing is. Dus bereken hiervan de afgeleide x'(t) en de tweede afgeleide x''(t), en vul dit in in je opgave: je kent dan alles wat in het linkerlid staat (x''(t), a, x'(t), b, x(t)) dus f(t) rolt er dan zo uit.

Ik zie nu wel dat je a en b fout bepaald zijn... Als je de theorie volgt dan weet je dat je twee verschillende e-machten krijgt wanneer je karakteristieke vergelijking twee verschillende reŽle oplossingen heeft. Die oplossingen zijn 3 en -2, want dat zijn de coŽfficiŽnten die in de e-exponenten staan. Dus je karakteristieke vergelijking is een tweedegraadsvergelijking met als nulpunten 3 en -2, dus dat is (X-3)(X+2)=X2-X-6, dus a=-1 en b=-6.

Groeten,
Christophe.

Christophe
Vragen naar aanleiding van dit antwoord? Klik rechts..!
donderdag 24 augustus 2006



klein |  normaal |  groot

home |  vandaag |  bijzonder |  twitter |  gastenboek |  statistieken |  wie is wie? |  colofon

©2001-2021 WisFaq - versie 3