De digitale vraagbaak voor het wiskundeonderwijs

home |  vandaag |  gisteren |  bijzonder |  prikbord |  gastenboek |  wie is wie? |  contact

HOME

samengevat
vragen bekijken
een vraag stellen
hulpjes
zoeken
FAQ's
links
twitter
boeken
help

inloggen

colofon

  \require{AMSmath} Printen

Overschakelen van imaginair goniometrische vgl naar expo imag vgl

Met poolcoordinaten:

Řr*(cos q+ i sin q)
Řr* e^(iq)

(cos q+ i sin q)= e^(iq)

Bewijs dat dit gelijk is aan elkaar.

Mathia
Overige TSO-BSO - woensdag 24 mei 2006

Antwoord

Mathias,
Het is gebruikelijk om e^(iq) te definieren als het complexe getal
cosq+isinq.Dus geen bewijs.Deze definitie is echter wel plausibel te maken.Stel e^(iy)=f(y)+ig(y)met f en g reŽle functies.DifferentiŽren geeft:e^(iy)=g'(y)-if'(y).Combineren van de uitdrukkingen voor e^(iy) geeft
f(y(=g'(y) en f'(y)=-g(y).Eliminatie van g geeft:f(y)=-f''(y).Omdat we
e^0=1 nemen,is f(0)=1 en f'(0)=0.Hieruit volgt dat f(y)=cosy en g(y)=
-f'(y)=siny.
Is dit de bedoeling?

kn
Vragen naar aanleiding van dit antwoord? Klik rechts..!
woensdag 24 mei 2006



klein |  normaal |  groot

home |  vandaag |  bijzonder |  twitter |  gastenboek |  wie is wie? |  colofon

©2001-2021 WisFaq - versie 3