De digitale vraagbaak voor het wiskundeonderwijs

home |  vandaag |  gisteren |  bijzonder |  gastenboek |  wie is wie? |  verhalen |  contact

HOME

samengevat
vragen bekijken
een vraag stellen
hulpjes
zoeken
FAQ
links
twitter
boeken
help

inloggen

colofon

  \require{AMSmath} Printen

Re: Dubbele integraal mbv substitutie

 Dit is een reactie op vraag 45527 
Bedankt tot zover. Ik heb dan nu uiteindelijk gekregen dat het er nu zo uitziet:
òò(vÖ(u2+4v2))/u ..... dudv.

De intervallen: {1v6 , 1u4}.

Op de stippeltjes moet nog de Jacobiaan. Ik weet alleen niet hoe ik deze moet opstellen! Ik heb dan toch termen van x= .... en y=.... nodig? (Ik ken de Jacobiaan alleen maar als d(x,y)/d(u,v)).
Hoe moet ik dit verder opstellen?

Henri

Henri
Student hbo - dinsdag 23 mei 2006

Antwoord

Dat is al correct.
Het is in dit geval inderdaad niet zo eenvoudig om de substituties te schrijven als x=... en y=... (en dat dan nog te gaan afleiden naar u en naar v).

Dus is het beter het anders te doen: normaal heb je
dx*dy = det(x/u x/v) *du*dv
................(y/u y/v)

Maar als je de rol van x,y omwisselt met u,v, dan kan je dus net zo goed schrijven:

du*dv = det(u/x u/y) *dx*dy
................(v/x v/y)

Of dus du*dv = 2(x^2+y^2) dx*dy
Of nog dx*dy = du*dv/(2*(x^2+y^2))

En dat is dan natuurlijk helemaal mooi, want die x2+y2 stond daarnet vervelend te doen in de noemer, dus die valt volledig weg, en je houdt een heel eenvoudige integraal over.

Waarschijnlijk kom je er ook wel op de andere manier (oplossen naar x en y), maar het zal heel wat meer werk zijn (je moet een bikwadratische vergelijking oplossen en zo).

Christophe
Vragen naar aanleiding van dit antwoord? Klik rechts..!
dinsdag 23 mei 2006



home |  vandaag |  bijzonder |  gastenboek |  statistieken |  wie is wie? |  verhalen |  colofon

©2001-2024 WisFaq - versie 3