De digitale vraagbaak voor het wiskundeonderwijs

home |  vandaag |  gisteren |  bijzonder |  prikbord |  gastenboek |  wie is wie? |  contact

HOME

samengevat
vragen bekijken
een vraag stellen
hulpjes
zoeken
FAQ's
links
twitter
boeken
help

inloggen

colofon

  \require{AMSmath} Printen

Lotto

Het betreft lotto. Bij dit spel is er sprake van 41 ballen, genummerd van 1 tot en met 41. Iedere zondag worden door een notaris 6 ballen getrokken uit een vaas. Een trekking levert dus een combinatie van 6 getallen op.

Er is uiteraard maar één combinatie 'alle 6 goed'. Om uit te rekenen hoeveel combinaties van 6 getallen 'precies 5 goed' leveren moet je je bedenken dat er dan 5 'uit de goede getallen' en 1 'uit de niet-goede getallen' moeten zijn genomen.

Hoeveel combinaties resulteren in 'precies 5 goed'?


Weet iemand hier de oplossing van en zou diegene dat mij alsjeblieft willen uitleggen?

W
Leerling bovenbouw havo-vwo - dinsdag 2 mei 2006

Antwoord

Hallo

Het aantal mogelijkheden om uit de 6 goede getallen er 5 te kiezen is gelijk aan het aantal combinaties van 5 uit 6 elementen, dus nCr(6,5) = 6
Het aantal mogelijkheden om uit de 35 niet-goede getallen er 1 te kiezen is gelijk aan het aantal combinaties van 1 uit 35 elementen, dus nCr(35,1) = 35
Het aantal mogelijkheden is dus 6 x 35 = 210

Heelwat berekeningen i.v.m. het lottospel vind je op onderstaande site.

Zie Combinatieleer in het Lottospel

Wie is wie?
Vragen naar aanleiding van dit antwoord? Klik rechts..!
dinsdag 2 mei 2006



klein |  normaal |  groot

home |  vandaag |  bijzonder |  twitter |  gastenboek |  wie is wie? |  colofon

©2001-2020 WisFaq - versie IIb