De digitale vraagbaak voor het wiskundeonderwijs

home |  vandaag |  gisteren |  bijzonder |  prikbord |  gastenboek |  wie is wie? |  contact

HOME

samengevat
vragen bekijken
een vraag stellen
hulpjes
zoeken
FAQ's
links
twitter
boeken
help

inloggen

colofon

  \require{AMSmath} Printen

Opp driehoek van 2 functiepunten

Hallo,

Eerst de opdracht maar:
f(x) = (x2-4)(2x+1)
g(x) = x2-4
De lijn met de vergelijking x=p, waarbij p uitsluitend waarden kan aannemen uit het interval -2,0, snijdt de grafiek f in A, en de grafiek g in B. Bereken de waarden van p waarvoor de oppervlakte van de driehoek 0AB gelijk is aan 3.

Wat ik heb gedaan:
Ik heb als punt A het snijpunt van grafiek f met de x-as genomen. Dat is -2. Dus dan kan je toch zeggen dat de opp van de driehoek 0.5*-2*|g(x)| = 3 is, oftewel |g(x)| = 3. Die oplossen geeft een aantal waardes, maar als ik dan de stijlheid (p) van die punten bereken klopt het dus niet. Nu denk ik zelf dat de fout zit in de manier waarop ik het oppervlak van de driehoek bereken. Ik ga uit van een driehoek met een hoek van 90 erin, en dat is hier niet het geval. Maar hoe moet ik dit dan wel oplossen?

Alvast bedankt!

Hans
Leerling bovenbouw havo-vwo - dinsdag 24 januari 2006

Antwoord

Huh? Waarom zou je voor punt A het snijpunt van de grafiek van f met de x-as nemen? Waar staat dat?
Bekijk onderstaand plaatje:
q43242img1.gif
punt A heeft coordinaten (p,(p2-4)(2p+1))
punt B heeft coordinaten (p,p2-4)
Dus de lengte van lijnstuk AB is dan (p2-4)(2p+1)-(p2-4)
Q is het snijunt van de lijn x=p met de x-as, dus Q heeft coordinaten (p,0)
Lijnstuk OQ heeft dan de lengte -p.
De oppervlakte van driehoek OAB is dan 1/2*lengte(AB)*lengte(OQ).
Probeer je het nu zelf even verder?

Wie is wie?
Vragen naar aanleiding van dit antwoord? Klik rechts..!
dinsdag 24 januari 2006



klein |  normaal |  groot

home |  vandaag |  bijzonder |  twitter |  gastenboek |  statistieken |  wie is wie? |  colofon

©2001-2021 WisFaq - versie 3