De digitale vraagbaak voor het wiskundeonderwijs

home |  vandaag |  gisteren |  bijzonder |  prikbord |  gastenboek |  wie is wie? |  contact

HOME

samengevat
vragen bekijken
een vraag stellen
hulpjes
zoeken
FAQ's
links
twitter
boeken
help

inloggen

colofon

  \require{AMSmath} Printen

Lineaire transformaties

Hoi,

Ik heb een opgave bij lineaire algebra een opgave over lineaire transformaties waar ik niet helemaal uit kom.
De opgave is:
Vind de standaard matrix van de transformatie van $\mathbf{R}$2 naar $\mathbf{R}$2. Spiegel om de lijn y=x, draai vervolgens 30 graden tegen de klok in en spiegel tot slot om de lijn y=-x.

Tot het volgende ben ik gekomen:
(ik voer de matrices net zo in als op mijn TI GR)

Spiegelen om de lijn y=x:
T[x;y] = [y;x] = x[0;1] + y[1;0] = [[0 1][1 0]][x;y]

30 graden tegen de klok in roteren (dus 30 graden positief):
$\theta$(30)=[[cos(30) -sin(30)][sin(30) cos(30)]]
= [[√(3)/2 -1/2][1/2 √(3)/2]]

Spiegelen om de lijn y=-x:
T[x;y] = [y;-x] = x[0;-1] + y[1;0] = [[0 1][-1 0]][x;y]

Volgens mij heb ik dit eerste deel wel (bijna) goed gedaan, ik kom er echter niet uit hoe ik deze 3 losse transformaties moet combineren tot één transformatiematrix. Ik hoop dat iemand me hierbij kan helpen.

Bij voorbaat dank,

Vriendelijke groet, Luc

Luc
Student universiteit - woensdag 11 januari 2006

Antwoord

Vermenigvuldig de matrices in de juiste volgorde.

Wie is wie?
Vragen naar aanleiding van dit antwoord? Klik rechts..!
woensdag 11 januari 2006



klein |  normaal |  groot

home |  vandaag |  bijzonder |  twitter |  gastenboek |  statistieken |  wie is wie? |  colofon

©2001-2021 WisFaq - versie 3