De digitale vraagbaak voor het wiskundeonderwijs

home |  vandaag |  gisteren |  bijzonder |  prikbord |  gastenboek |  wie is wie? |  contact

HOME

samengevat
vragen bekijken
een vraag stellen
hulpjes
zoeken
FAQ's
links
twitter
boeken
help

inloggen

colofon

  \require{AMSmath} Printen

Logaritmische vergelijking

Hoe los je dergelijke logaritmische vergelijking op?
3log(x-3)=1/(2.2log3)+(log(3x-13)2)/(log81)

Ik slaag er wel in om alles op 3log te krijgen maar als ik de logaritmen dan schrap kom ik een zesdegraadsvergelijking uit.

Dank bij voorbaat.

Joeri
3de graad ASO - zondag 14 augustus 2005

Antwoord

Probeer misschien eens om alles op de 10-logaritme te zetten... (je moet wat spelen met de rekenregels... bijvoorbeeld 81=3^4 dus log(81)=4*log(3) )
Dan krijg je:

log(x-3)/log(3)-1/(2 log(3)/log(2)) - 2 log(3x-13)/(4*log(3))=0

= log(x-3)/log(3)- log(2)/(2*log(3)) - log(3x-13)/(2*log(3))=0

= log(x-3)- log(2)/2 - log(3x-13)/2=0

Kan je nu verder?

Wie is wie?
Vragen naar aanleiding van dit antwoord? Klik rechts..!
zondag 14 augustus 2005



klein |  normaal |  groot

home |  vandaag |  bijzonder |  twitter |  gastenboek |  statistieken |  wie is wie? |  colofon

©2001-2021 WisFaq - versie 3