De digitale vraagbaak voor het wiskundeonderwijs

home |  vandaag |  gisteren |  bijzonder |  prikbord |  gastenboek |  wie is wie? |  contact

HOME

samengevat
vragen bekijken
een vraag stellen
hulpjes
zoeken
FAQ's
links
twitter
boeken
help

inloggen

colofon

  \require{AMSmath} Printen

Dualiteit platonische lichamen

Beste mensen, morgen moet ik mijn wiskunde po inleveren, en ik heb een vraagje over dualiteit. Ik heb het volgende schema gemaakt:
                       t      h      o       d       i
Aantal zijvlakken 4 6 8 12 20
Aantal hoekpunten 4 8 6 20 30
Aantal ribben 6 12 12 30 12
Orde van de zijde 3 4 3 5 3
Orde van het hoekpunt 3 3 4 3 5
Nu was de vraag hoe je die dualiteit kon zien in het schema. Heeft dat met orde van zijde en orde van hoekpunt te maken? Want de orde van zijde van een hexaeder is de orde van hoekpunt van een octaeder. En de orde van het hoekpunt van een hexaeder is de orde van een zijde van een octaeder. Zo ook bij het dodecaeder en een icosaeder. En als je twee tetraeders neemt ook.
Klopt dit of verkondig ik nu de meest grote onzin ooit?
bvd,
Bianca

Bianca
Leerling bovenbouw havo-vwo - donderdag 23 mei 2002

Antwoord

De dualiteit heeft inderdaad te maken met 'orde van zijde' en 'orde van hoekpunt'. Of zoals op http://www.georgehart.com/virtual-polyhedra/platonic-info.html staat: 'Observe that if {p,q} is a possible solid, then so is {q,p}.'.

Het is nog veel gekker! Als je een kubus tekent {4,3} en je verbindt alle 'middelpunten' van de 6 zijden met elkaar, dan krijg je een octaŽder {3,4} en andersom!. Toeval?

q3310img1.gif

En wat dacht je van de dodecaeder {5,3} en icosaeder {3,5}?

q3310img2.gif

Dan zou de tetraeder {3,3} zijn 'eigen' duale moeten zijn!
En wat denk je:

q3310img3.gif

Nou dat is toch mooi! Dus helemaal geen onzin! De vraag is natuurlijk hoe dat nou precies in elkaar steekt... hoe kan dat? Maar daar mag je zelf over nadenken...

Zie Platonic solids

Wie is wie?
Vragen naar aanleiding van dit antwoord? Klik rechts..!
donderdag 23 mei 2002
  Re: Dualiteit platonische lichamen  


klein |  normaal |  groot

home |  vandaag |  bijzonder |  twitter |  gastenboek |  wie is wie? |  colofon

©2001-2019 WisFaq - versie IIb