De digitale vraagbaak voor het wiskundeonderwijs

home |  vandaag |  gisteren |  bijzonder |  prikbord |  gastenboek |  wie is wie? |  contact

HOME

samengevat
vragen bekijken
een vraag stellen
hulpjes
zoeken
FAQ's
links
twitter
boeken
help

inloggen

colofon

  \require{AMSmath} Printen

Re: De wortel van elk priemgetal is irrationaal

 Dit is een reactie op vraag 3643 
Is er ook een bewijs dat als ggd(a,b)=1 dat ggd(a2,b2) ook 1 is?

R.
Leerling onderbouw vmbo-havo-vwo - zondag 16 januari 2005

Antwoord

Beste Raymond,

Ja zo'n bewijs is er. Stel dat ggd(a,b)=1, maar ggd(a2,b2)$>$1. Dan is er een priemgetal p zodat p een deler is van ggd(a2,b2). Dus p is een deler van a2 en van b2. Maar p is niet een deler van een van beide, a of b. Laten we zeggen dat p geen deler is van a.

Elk getal kunnen we schrijven als product van allemaal priemgetallen, de hoofdstelling van de getaltheorie, en dat kan maar op één manier. Maar als p niet in het rijtje van priemgetallen zit dat a vormt, dan natuurlijk ook niet in het verdubbelde rijtje dat a2 vormt. Dus het kan helemaal niet dat p een deler is van a2, maar niet van a.

Dan moet onze eerste veronderstelling, dat ggd(a,b)=1 maar ggd(a2,b2)$>$1, dus fout zijn. Want er volgt onzin uit.

Wie is wie?
Vragen naar aanleiding van dit antwoord? Klik rechts..!
maandag 17 januari 2005



klein |  normaal |  groot

home |  vandaag |  bijzonder |  twitter |  gastenboek |  wie is wie? |  colofon

©2001-2021 WisFaq - versie 3