De digitale vraagbaak voor het wiskundeonderwijs

home |  vandaag |  gisteren |  bijzonder |  prikbord |  gastenboek |  wie is wie? |  contact

HOME

samengevat
vragen bekijken
een vraag stellen
hulpjes
zoeken
FAQ's
links
twitter
boeken
help

inloggen

colofon

  \require{AMSmath} Printen

Bewijs van ongelijkheid bij reele getallen

Ik slaag er maar niet in het bewijs te leveren voor het volgende
"a,b: ab+1 en a+b=2c-1Ůabc(c-1)

Als gegeven heb ik dan:
a,b
ab+1 (of a-b1)
a+b=2c-1

Te bewijzen: abc(c-1)

Door het gegeven te gebruiken vond ik de volgende dingen:
c-1b
ac
dus: acb+1

Maar hiermee raak ik maar niet tot het te bewijzen. Kunnen jullie me verder helpen? Dankje!

Irmgar
Student Hoger Onderwijs BelgiŰ - dinsdag 4 januari 2005

Antwoord

Bewijs uit het ongerijmde:
Stel ab+1 en a+b=2c-1 en abc(c-1): we leiden een tegenspraak af!

ab c(c-1) 4ab 2c(2c-2) 4ab (a+b+1)(a+b-1)
4ab a2+2ab+b2-1 0 (a-b)2-1.
Nu weet je dat ab+1 en dus het rechterlid groter moet zijn dan 0.
Hiermee is de tegenspraak aangetoond.
Uitgaande van ab+1 en a+b=2c-1 kan nooit gelden: abc(c-1)
Dus moet dan wel abc(c-1).

Het kan ook wel zonder het ongerijmde (kijk daarbij op dezelfde manier naar c(c-1)-ab en laat zien dat dit altijd > 0 is), dat moet ook wel lukken.
Uit het ongerijmde zag ik eigenlijk direct zitten.

Met vriendelijke groet
JaDeX

Wie is wie?
Vragen naar aanleiding van dit antwoord? Klik rechts..!
dinsdag 4 januari 2005



klein |  normaal |  groot

home |  vandaag |  bijzonder |  twitter |  gastenboek |  wie is wie? |  colofon

©2001-2021 WisFaq - versie 3