De digitale vraagbaak voor het wiskundeonderwijs

home |  vandaag |  gisteren |  bijzonder |  gastenboek |  wie is wie? |  verhalen |  contact

HOME

samengevat
vragen bekijken
een vraag stellen
hulpjes
zoeken
FAQ
links
twitter
boeken
help

inloggen

colofon

  \require{AMSmath} Printen

Taylor-ontwikkeling

Eeej wisfaq,

Ik ben bezig met een werkstuk over Taylor-reeksen en heb op deze site al heel wat informatie kunnen vinden.
Toch heb ik nog wat vragen waarvan ik graag de oplossing zou willen weten.

Hoe moet je bijvoorbeeld ln bij e in een Taylor-reeks ontwikkelen? Ik kan het wel uitwerken maar hoe kom ik aan zoŽn mooie formule met een sommatie-teken erin?

Bekend is dat cosh(x)=$\sum$beginnend bij n=0 naar oneindig voor ((x)tot de macht 2n)/((2n)!)
Als je nu bijvoorbeeld cosh(3x) rond 0 in een Taylor-reeks wilt ontwikkelen mag je dan in bovenstaande de x in 3x veranderen?

Gegeven is de functie f(x)=x/(3+x) kan ik dit ook in een Taylor-reeks rond 0 ontwikkelen en nagaan in welk gebied de gevonden reeks naar f convergeert?

Alvast onwijs bedankt!
Groeten,

Teddy
Student hbo - zondag 12 december 2004

Antwoord

Een mooie formule kan je bekomen als je de bewuste afgeleiden in een gesloten uitdrukking kan neerschrijven. Controleer zelf dat de n-de afgeleide van ln(x) gelijk is aan

(-1)n+1.(n-1)!.(1/x)n

zodat je nu de reeks van ln(x) rond x=e bondig kan neerschrijven met een sommatieteken.

Over je vraag over cosh(3x), ja, je mag de x in 3x veranderen. Het convergentieinterval wordt dan natuurlijk wel 3 keer kleiner, maar dat is hier niet zo erg aangezien de reeks voor cosh(x) overal convergeert.

De reeks voor x/(3+x) kan je handig vinden door die functie te herschrijven als de reekssom van een meetkundige reeks:

x/(3+x) = 1/(3/x + 1) = 1/(1 - (-3/x))

Als je nu bedenkt dat 1+q+q2+... = 1/(1-q) voor |q|$<$1, wat is dan de Taylorreeks van x/(3+x) en wat is het convergentiegebied?

Wie is wie?
Vragen naar aanleiding van dit antwoord? Klik rechts..!
zondag 12 december 2004
 Re: Taylor-ontwikkeling 



home |  vandaag |  bijzonder |  gastenboek |  statistieken |  wie is wie? |  verhalen |  colofon

©2001-2024 WisFaq - versie 3