De digitale vraagbaak voor het wiskundeonderwijs

home |  vandaag |  gisteren |  bijzonder |  prikbord |  gastenboek |  wie is wie? |  contact

HOME

samengevat
vragen bekijken
een vraag stellen
hulpjes
zoeken
FAQ's
links
twitter
boeken
help

inloggen

colofon

  \require{AMSmath} Printen

Volledige inductie sommen

= {1, 2, 3, ...}

Toon aan:

1. Voor alle n uit geldt: k^3 van k=1 tot n = ( k)^2 tevens k = 1 tot n.

2. Voor alle n uit geldt: ((-1)^(k+1))/k van k=1 tot 2n = 1/k van k=n+1 tot 2n.

Eventueel heb ik een verduidelijking in een word bestandje, die ik naar jullie toe kan mailen, wat ik tot nu toe van de som heb.

Johan
Student hbo - donderdag 2 december 2004

Antwoord

voor de eerste:
inductiebasis (n=1): 1 = 1^2 ok
inductiestap: stel ok voor n-1, dus [som( k^3) van k=1 tot n] = [(som(k))^2 van k = 1 tot n-1]
we hebben dan
[(som(k))^2 van k = 1 tot n]
=(n + som(k)van k=1 tot n-1)^2
=n^2 + 2n [som(k) van k=1 tot n-1] + [(som(k))^2 van k = 1 tot n-1]
=n^2 + 2n [som(k) van k=1 tot n-1] + [som(k^3) van k=1 tot n-1]
=n^2 +2n[(n-1)(1+n-1)/2] + [som(k^3) van k=1 tot n-1]
=n^3 + [som(k^3) van k=1 tot n-1]
=som(k^3) van k=1 tot n

voor de tweede:
inductiebasis(n=1): 1-1/2 = 1/2 ok
inductiestap: stel ok voor (n-1), dus [som(((-1)^(k+1))/k) van k = 1 tot 2n-2] = [som(1/k) van k = n tot 2n-2]
we hebben dan
[som(((-1)^(k+1))/k) van k = 1 tot 2n]
=[som(((-1)^(k+1))/k) van k = 1 tot 2n-2] + ((-1)^(2n))/(2n-1) + ((-1)^(2n+1))/2n
=[som(1/k) van k = n tot 2n-2] + 1/(2n-1) -1/2n
=1/n + [som(1/k) van k = n+1 tot 2n-1] -1/2n
=[som(1/k) van k = n+1 tot 2n-1] + 2/2n -1/2n
=[som(1/k) van k = n+1 tot 2n-1] + 1/2n
=[som(1/k) van k = n+1 tot 2n]

Eva
Vragen naar aanleiding van dit antwoord? Klik rechts..!
woensdag 8 december 2004



klein |  normaal |  groot

home |  vandaag |  bijzonder |  twitter |  gastenboek |  wie is wie? |  colofon

©2001-2021 WisFaq - versie 3