De digitale vraagbaak voor het wiskundeonderwijs

home |  vandaag |  gisteren |  bijzonder |  prikbord |  gastenboek |  wie is wie? |  contact

HOME

samengevat
vragen bekijken
een vraag stellen
hulpjes
zoeken
FAQ's
links
twitter
boeken
help

inloggen

colofon

  \require{AMSmath} Printen

Re: Bewijzen

 Dit is een reactie op vraag 25593 
Is het niet gewoon mogelijk om het zo onder elkaar te zetten

x^4+4x^3+6px^2+4qx+r
x^3+ 3x^2+9x+3

en dan te beredeneren: 6px^2 is al deelbaar door 3x^2 dus kan de p 1 zijn.

4qx is pas deelbaar door 9x als je het met 9 vermenigvuldigd dus q=9

en r is deelbaar door 3 als r=1

dan krijg je 1(9+3) = 12

Mag ik dit zo beredeneren?

Groetjes remco

Remco
Leerling bovenbouw havo-vwo - woensdag 25 augustus 2004

Antwoord

Nee dat mag je zo niet doen.
Je laat b.v. die x4 gemakshalve even weg.

De vierdegraadsvorm is deelbaar door de derdegraadsvorm als
(x+a)(x3+3x2+9x+12) na uitwerken de vierdegraadsvorm geeft.
Haakjes uitwerken levert:
x4+(3+a)x3+(9+3a)x2+(3+9a)x+3a en dit moet voor alle x gelijk zijn aan x4+4x3+6px2+4qx+r, dus moeten de afzonderlijke coefficienten gelijk zijn.

Conclusie
3+a=4
9+3a=6p
3+9a=4q
3a=r

Uit 3+a=4 volgt a=1, dit invullen levert:
12=6p
12=4q
3=r

dus
p=2
q=3
r=3

Wie is wie?
Vragen naar aanleiding van dit antwoord? Klik rechts..!
woensdag 25 augustus 2004
 Re: Re: Bewijzen 
 Re: Re: Bewijzen 



klein |  normaal |  groot

home |  vandaag |  bijzonder |  twitter |  gastenboek |  wie is wie? |  colofon

©2001-2021 WisFaq - versie 3