De digitale vraagbaak voor het wiskundeonderwijs

home |  vandaag |  gisteren |  bijzonder |  prikbord |  gastenboek |  wie is wie? |  contact

HOME

samengevat
vragen bekijken
een vraag stellen
hulpjes
zoeken
FAQ's
links
twitter
boeken
help

inloggen

colofon

  \require{AMSmath} Printen

Re: RSA

 Dit is een reactie op vraag 25927 
Hoi Anneke,
Heel erg bedankt voor je snelle reactie. Ik weet niet of ik zo weer door kan reageren met een nieuwe vraag, maar probeer het gewoon. Want, helaas stuit ik nu nog op een onduidelijkheid, die gaat als volgt. Als M mijn boodschap is, C de codetekst die ik uiteindelijk verzend, e de coderingscode is en d mijn decoderingscode krijg je met het coderen en decoderen de volgende 'formules':

C = Me (mod n) en Cd (mod n) = M'

nu geldt dus M' = M.

Dit kun je bewijzen door:

M’ $\equiv$ Cd (mod n) $\equiv$ (Me)d (mod n) $\equiv$ Med (mod n)

Med = M(1+k$\phi$(n))

M(1+k$\phi$(n)) =(M$\phi$(n))k M $\equiv$ (1)k M (mod n) $\equiv$ 1 (mod n)

Op zich snap ik dit voor een groot gedeelte. Mij is onduidelijk waar nu precies wel en geen '(mod n)' bijhoort. Of mag het overal tussen de $\equiv$-tekens staan?
En waarom is (M$\phi$(n)) k = 1k?

Alvast hartstikke bedankt!
Groetjes,

wendy
Leerling bovenbouw havo-vwo - woensdag 30 juni 2004

Antwoord

Hoi,

De onderliggende wiskunde van deze RSA-encryptie is de stelling van Euler, een veralgemening van de kleine stelling van Fermat.

Als a en n onderling ondeelbaar zijn (ggd(a,n)=1), dan is a$\phi$(n)=1 (mod n). In het bijzonder geldt dan voor je welgevormde bericht M dat M$\phi$(n)=1 (mod n). (Of je dat met $\equiv$ of = schrijft, maakt volgens mij weinig uit. Ik zou die $\equiv$ voor het gemak en de duidelijkheid nooit gebruiken. Soms laten ze de (mod n) weg als het duidelijk is, maar het kan geen kwaad om dat er altijd bij te zetten.)

De truuk (en de moeilijkheid) bestaat erin 2 getallen e en d te vinden zodat e.d=1 (mod $\phi$(n)) of anders genoteerd: e.d=1+k.$\phi$(n) voor een zekere gehele k. De kracht van de code volgt uit het feit dat het praktisch te lang duurt om d te berekenen als je n en e kent.

Met C en M' zoals jij die definieerde, hebben we dan (alles (mod n)):
M'=Cd=(Me)d=M1+k.$\phi$(n)=M.(M$\phi$(n))k=M.1k=M.

Groetjes,
Johan

andros
Vragen naar aanleiding van dit antwoord? Klik rechts..!
vrijdag 2 juli 2004



klein |  normaal |  groot

home |  vandaag |  bijzonder |  twitter |  gastenboek |  wie is wie? |  colofon

©2001-2021 WisFaq - versie 3