De digitale vraagbaak voor het wiskundeonderwijs

home |  vandaag |  gisteren |  bijzonder |  prikbord |  gastenboek |  wie is wie? |  contact

HOME

samengevat
vragen bekijken
een vraag stellen
hulpjes
zoeken
FAQ's
links
twitter
boeken
help

inloggen

colofon

  \require{AMSmath} Printen

Bewijs omtrent cos 4A + cos4B + cos4C = -1

hallo...ik ben al een tijdje op zoek naar dit bewijs maar kan het nergens vinden

indien in de driehoek abc
cos 4A + cos4B + cos4C = -1

bewijs dan dat een van de hoeken van deze driehoek een veelvoud is van p/4

nico m
Iets anders - zaterdag 22 mei 2004

Antwoord

dag Nico,

Het bewijs de andere kant op (met enige aanpassing) is niet moeilijk, maar dat vroeg je ook niet
Toch kan het helpen om inzicht in de materie te krijgen.
Dus eerst even de andere kant op, dat wil zeggen: we weten dat een van de hoeken, zeg bv a, gelijk is aan kp/4 (voor k=1, 2 of 3)
Dan geldt (vanwege de driehoek):
b = p - a - g
dus
4b = 4p - kp - 4g = (4-k)p - g
Maak nu onderscheid tussen oneven en even waarden voor k.
voor k=1 of k=3 geldt: cos(4b) = - cos(4g)
en cos(4a) = -1
Voor k=2 geldt: a=p/2
Dan is cos(4a) = 1, en dan gaat de vergelijking alleen op als zowel b als g gelijk zijn aan p/4.

Nu de oorspronkelijke vraag.
Vanwege de driehoek kun je g uitdrukken in a en b. Vermenigvuldigen met 4 geeft:
4g = 4p - 4a - 4b, dus
cos(4g) = cos(4a+4b).
Noem even x=cos(4a) en y=cos(4b)
De vergelijking wordt dan:
x + y + xy - (1-x2)(1-y2) = -1
Herleiden en kwadrateren levert:
(x+1)2(y+1)2=(1-x)(1+x)(1-y)(1+y)
wat weer leidt tot de oplossingen:
x=-1
y=-1
x=-y
Ofwel
4a=p of
4b=p of
4a+4b=p
Elk van deze oplossingen levert het gewenste resultaat.
Met dank aan medebeantwoorders cl en hk, die bovenstaande vergelijking weer op een andere manier oplossen.
Zie eventueel ook

Zie hoek van 120 graden

Wie is wie?
Vragen naar aanleiding van dit antwoord? Klik rechts..!
zondag 23 mei 2004



klein |  normaal |  groot

home |  vandaag |  bijzonder |  twitter |  gastenboek |  wie is wie? |  colofon

©2001-2021 WisFaq - versie 3