De digitale vraagbaak voor het wiskundeonderwijs

home |  vandaag |  gisteren |  bijzonder |  prikbord |  gastenboek |  wie is wie? |  contact

HOME

samengevat
vragen bekijken
een vraag stellen
hulpjes
zoeken
FAQ's
links
twitter
boeken
help

inloggen

colofon

  \require{AMSmath} Printen

Transformatie van 3-dimensionale euclidische ruimte

Ik heb 2 cartesiaanse assenstelsels, 1 vast en 1 dat kan bewegen oorsprong vallen samen (zodat de punten allemaal vast liggen tov het referentie assenstelsel).
Om nu deze punten terug om te zetten naar het vaste assenstelsel kan men zijn coŲrdinaten vermenigvuldigen met een matrix. Wat is deze matrix? het referentie assenstelsel kan roteren in de 3 richtingen tov de oorsprong
ik kom momenteel als volgt uit

X= cos $\beta$∑cos$\gamma$∑x + cos$\beta$∑sin$\gamma$∑z + sin $\beta$∑y

Y= (-cos$\alpha$∑sin$\beta$∑cos$\gamma$-sin$\alpha$∑sin$\gamma$)∑x
+(cos$\alpha$∑cos$\beta$)y
+( -cos$\alpha$∑sin$\beta$ + sin$\alpha$∑cos$\gamma$)

Z= (sin$\alpha$sin$\beta$cos$\gamma$- cos$\alpha$sin$\gamma$)∑x
+(-sin$\alpha$∑cos$\beta$)∑y
+(sin$\alpha$sin$\beta$sin$\gamma$+cos$\alpha$∑cos$\gamma$∑z

(eerst heb ik de Hoek in YZ genomen dan die in XY en dan XZ)

klopt mijn resultaat en/of kan dit niet eenvoudiger , aangezien ik er van uitga dat de volgorde van de keuze van de hoeken niet uitmaakt waardoor je een symetrische matrix zou bekomen?

Vraag: Optimale Matrix

tom le
Student Hoger Onderwijs BelgiŽ - dinsdag 8 juli 2003

Antwoord

Het ziet er vrij goed uit. Alleen wordt conventioneel een andere volgorde gebruikt:



Het bijgevoegd pfd-bestand geeft de analytische uitwerking.

Koen Mahieu

Zie Kinematische vergelijkingen van Euler

Wie is wie?
Vragen naar aanleiding van dit antwoord? Klik rechts..!
dinsdag 8 juli 2003
 Re: Transformatie van 3-dimensionale euclidische ruimte 



klein |  normaal |  groot

home |  vandaag |  bijzonder |  twitter |  gastenboek |  statistieken |  wie is wie? |  colofon

©2001-2021 WisFaq - versie 3